固态电池引发市场高度关注

2019-04-14      889 次浏览

随着全球电动车浪潮席卷关于固态电池的新闻越来越多:从Fisker宣称开发充电1分钟行驶500公里的固态电池,到宝马已与SolidPower进行合作开发下一代电动车用固态电池,再到丰田又宣称将在2025年前实现全固态电池的实用化。作为下一代电池技术的代表,固态电池引发市场高度关注。


▌传统液态锂电不会是动力电池的术终点


传统动力电池体系难以满足10年后的能量密度需求


众所周知,动力电池直接对应新能车产品的性价比,而能量密度是动力电池的关键指标。


我国电动车市场正经历由“政策驱动”向“政策助跑”的转换,政策对于锂电产业能量密度提升的导向已经明确,补贴直接与能量密度挂钩并不断提高门槛。


工信部颁布的《中国制造2025》指明:“到2025年、2030年,我国动力电池单体能量密度分别需达到400Wh/kg、500Wh/kg。”指标分别对应当前乘用车动力电池单体平均水平170Wh/kg的2-3倍。


为了理清400-500Wh/kg对于动力电池能量密度的概念,我们对锂离子电池技术的迭代路径进行了梳理,我国正位于第二代向第三代锂电发展的过程中。


正极材料的选择上,我国已由磷酸铁锂转向三元,并逐渐向高镍三元发展。负极材料当前产业化仍集中于石墨材料,未来也在向硅碳负极进行过渡。


据推算,当前采用的高电压层状过渡金属氧化物和石墨作为正负极活性材料所组成的液态锂离子动力电池的重量能量密度极限约为280Wh/kg左右。


引入硅基合金替代纯石墨作为负极材料后,锂离子动力电池的能量密度有望做到300Wh/kg以上,其上限约为400Wh/kg。


安全问题关乎行业健康发展,难以彻底根除


可燃的液态有机电解液是电池自燃的幕后元凶。新能源汽车销量逐年增长却伴随着安全事故的增加,其中,电池自燃占比事故原因的31%。自燃的原因是由于锂电池发生内部或者外部短路后,短时间内电池释放出大量热量,温度极剧升高,导致热失控。而易燃性的液态电解液在高温下会被点燃,最终导致电池起火或者爆炸。


面对能量与安全两座大山,下一代锂电的风口在哪?回望电动车电池技术发展史,从早期的铅酸电池,到丰田等日企主打的镍氢电池,再到08年特斯拉roaster使用的锂离子电池,传统液态锂离子电池已统治动力电池市场十年。


未来,能量与安全需求与传统锂电技术的矛盾将越来越凸显,在下一代锂电技术中,固态电池获得了最高的关注度,已引发全球范围的企业进行提前卡位。


▌为什么一定是固态电池


不燃烧,根除安全隐患


固态电池是采用固态电解质的锂离子电池。工作原理上,固态锂电池和传统的锂电池并无区别:传统的液态锂电池被称为“摇椅式电池”,摇椅的两端为电池的正负两极,中间为液态电解质,锂离子在电解液中迁移来完成正负极间的穿梭实现充放电,而固态电池的电解质为固态,相当于锂离子迁移的场所转到了固态的电解质中。固态电解质是固态电池的核心。


固态电解质不可燃烧,极大提高电池安全性。与传统锂电池相比,全固态电池最突出的优点是安全性。固态电池具有不可燃、耐高温、无腐蚀、不挥发的特性,避免了传统锂离子电池中的电解液泄露、电极短路等现象,降低了电池组对于温度的敏感性,根除安全隐患。


同时,固态电解质的绝缘性使得其良好地将电池正极与负极阻隔,避免正负极接触产生短路的同时能充当隔膜的功能。


兼容高容量正负极+轻量化电池系统,推动能量密度大飞跃


(1)更宽的电化学窗口,更易搭载高电压正极材料


提高正极材料容量需要充电至高电压以便脱出更多的锂,目前针对钴酸锂的电解质溶液可以充电到4.45V,三元材料可以充电到4.35V,继续充到更高电压,液态电解液会被氧化,正极表面也会发生不可逆相变,三元811电池的推广目前便受到了耐高压电解液的制约。


而固态电解质的电化学窗口更宽,可达到5V,更加适应于高电压型电极材料。随着正极材料的持续升级,固态电解质能够做出较好的适配,有利于提升电池系统的能量密度。


(2)兼容金属锂负极,提升能量密度上限


高容量与高电压的特性,让金属锂成为继石墨与硅负极之后的“最终负极”。为了实现更高的能量密度目标,以金属锂为负极的电池体系已成为必然选择。因为:


锂金属的克容量为3860mAh/g,约为石墨(372mAh/g)的10倍


金属锂是自然界电化学势最低的材料,为-3.04V。同时其本身就是锂源,正极材料选择面更宽,可以是含锂或不含锂的嵌入化合物,也可以是硫或硫化物甚至空气,分别对应能量密度更高的锂硫和锂空电池,理论能量密度接近当前电池的10倍。


锂金属负极在当前传统液态电池体系难以实现。锂金属电池的研究最早可追溯到上世纪60年代,并在20世纪70年代已成功开发应用于一次电池。


而在可充放电池领域,金属锂负极在液态电池中存在一系列技术问题至今仍缺乏有效的解决方法,比如金属锂与液态电解质界面副反应多、SEI膜分布不均匀且不稳定导致循环寿命差,金属锂的不均匀沉积和溶解导致锂枝晶和孔洞的不均匀形成。


固态电解质在解决锂金属负极应用问题上被科学界寄予厚望。研究者把解决金属锂负极的应用问题寄希望于固态电解质的使用,主要思路是避免液体电解质中持续发生的副反应,同时利用固体电解质的力学与电学特性抑制锂枝晶的形成。


此外,由于固态电解质将正极与负极材料隔离开,不会产生锂枝晶刺破隔膜的短路效应。总而言之,固态电解质对于锂金属负极拥有更好的兼容性,锂金属材料将在固态电池平台上率先应用。


减轻系统重量,能量密度进一步提升


固态电池系统重量减少进一步提升能量密度。动力电池系统需要先生产单体,单体封装完成后将单体之间进行串联组装。若先在单体内部进行串联,则会导致正负极短路与自放电。固态电池电芯内部不含液体,可实现先串并联后组装,减少了组装壳体用料,PACK设计大幅简化。


此外,由于彻底的安全特性,BMS等温控组件将得以省去,并可通过无隔膜设计进一步为电池系统“减负”。


固态电池是最有希望率先产业化的下一代电池技术


固态电池体系革命更小。锂硫电池、锂空气等体系需更换整个电池结构框架,难题更多也更大,而固态电池主要在于电解液的革新,正极与负极可继续沿用当前体系,实现难度相对小。


锂金属负极兼容,通过固态电解质实现。锂硫、锂空气均需采用锂金属负极,而锂金属负极更易在固态电解质平台实现。


固态电池作为距离我们最近的下一代电池技术已成为科学界与产业界的共识,是后锂电时代的必经之路。


▌固态电池距离我们还有多远


高阻抗、低倍率的核心难题


当前固态电解质体相离子电导率远低于液态电解质的水平,往往相差多个数量级。按照材料的选择,固态电解质可以分为聚合物、氧化物、硫化物三种体系,而无论哪一种类别,均无法回避离子传导的问题。


电解质的功能在于电池充放电过程中为锂离子在正负极之间搭建锂离子传输通道来实现电池内部电流的导通,决定锂离子运输顺畅情况的指标被称为离子电导率,低的离子电导率意味着电解质差的导锂能力,使锂离子不能顺利在电池正负极之间运动。


聚合物体系的室温电导率约10-7-10-5S/cm,氧化物体系室温下电导率为10-6-10-3S/cm,硫化物体系电导率最高,室温约10-3-10-2S/cm,而传统液态电解质的室温离子电导率为10-2S/cm左右,比任意固态电解质类型的离子电导率都要高。


此外,固态电解质拥有高界面阻抗。在电极与电解质界面上,传统液态电解质与正、负极的接触方式为液/固接触,界面润湿性良好,界面之间不会产生大的阻抗,相比较之下,固态电解质与正负极之间以固/固界面的方式接触,接触面积小,与极片的接触紧密性较差,界面阻抗较高,锂离子在界面之间的传输受阻。


低离子电导率与高界面阻抗导致了固态电池的高内阻,锂离子在电池内部传输效率低,在高倍率大电流下的运动能力更差,直接影响电池的能量密度与功率密度。


三大技术路线产业化进展


固态电池的三大体系各有优势,其中聚合物电解质属于有机电解质,氧化物与硫化物属于无机陶瓷电解质。


纵览全球固态电池企业,有初创公司,也不乏国际厂商,企业之间独踞山头信仰不同的电解质体系,未出现技术流动或融合的态势。欧美企业偏好氧化物与聚合物体系,而日韩企业则更多致力于解决硫化物体系的产业化难题,其中以丰田、三星等巨头为代表。


聚合物体系工艺最成熟,率先诞生EV级别产品,其概念性与前瞻性引发后来者加速投资研发,但性能上限制约发展,与无机固态电解质复合将是未来可能的解决路径;


氧化物体系中,薄膜类型开发重点在于容量的扩充与规模化生产,而非薄膜类型的综合性能较好,是当前研发的重点方向;硫化物体系是最具希望应用于电动车领域的固态电池体系,但处于发展空间巨大与技术水平不成熟的两极化局面,解决安全问题与界面问题是未来的重点。


产业化尚处早期,前景已有保障


市场化产品能量密度较低。现阶段固态电池量产产品很少,产业化进程仍处于早期。唯一实现动力电池领域量产的博洛雷公司产品能量密度仅为100Wh/kg,对比传统锂电尚未具备竞争优势。


高性能的实验室产品将为产业化奠基。从海外各家企业实验与中试产品来看,固态电池能量密度优势已开始凸显,明显超过现有锂电水平。


在我国,固态锂电的基础研究起步较早,在“六五”和“七五”期间,中科院就将固态锂电和快离子导体列为重点课题,此外,北京大学、中国电子科技集团天津18所等院所也立项进行了固态锂电电解质的研究,并在此领域取得了不错的进展。


未来,随着产业投入逐渐加大,产品性能提升的步伐也望加速。


固态电池对锂电产业链的影响


除了电解质,固态电池在其他电池部件上的选择与传统锂电也有一定差异。


电极材料采用与固态电解质混合的复合电极。结构上,固态电池正负极与传统电极的最大区别在于:为了增加极片与电解质的接触面积,固态电池的正负极一般会与固态电解质混合。


例如在正负极颗粒间热压或填充固态电解质,或者在电极侧引入液体,形成固-液复合体系,这都与传统锂电单独混合极片浆料并在铝/铜箔上涂布不同。


而在材料选择上,由于固态电解质普遍更高的电化学窗口,高镍高压正极材料更容易搭载,未来也将持续沿用新的正极材料体系,负极材料上,多采用硅、金属锂等高容量负极,充分发挥固态电池的优势。


电极与电解质之间存在缓冲层。缓冲层的加入能起到改善电极与电解质界面性能的作用。其成分可以为凝胶化合物、Al2O3等。


隔膜仍然存在,电池实现全固态后消失。现阶段的大部分固态电池企业的产品仍需添加少量液态电解液以缓解电极界面问题、增加电导率,因此隔膜仍然存在与电池中以用来阻隔正负极,避免电池短路。


这种折中的解决方法同时拥有固态电池的性能优势,在技术难度上也更加易于实现。而随着技术推进,未来电解液用量会越来越少,当过渡到完全不含液体或液体含量足够小时,电池将取消隔膜设计,体系已能满足安全需求。


多采用软包的封装技术。除去液态电解液后,固态电池的封装与PACK上比传统锂电更灵活、更轻便,因此将采用软包封装。


▌阶段发展之路:步步为营,梯次渗透


展望未来发展趋势,技术上步步为营,应用上梯次渗透,固态电池阶段发展之路已经明晰。


结构上,现阶段电池体系包含部分液态电解质以取长补短。而技术发展过程中将逐渐减少液体的使用,从半固态电池到准固态电池,最终迈向无液体的全固态电池。


应用领域上,有望率先发挥安全与柔性优势,应用于对成本敏感度较小的微电池领域,如RFID、植入式医疗设备、无线传感器等;技术进步后,再逐渐向高端消费电池渗透;随着产品的成熟,最终大规模踏入电动车与储能市场,从高端品牌往下渗透,实现下游需求的全面爆发。


固态电池:后锂电时代必经之路


固态电池:后锂电时代必经之路


▌固态电池为新能源车的未来保驾护航


海外龙头加码研发,市场有望超速发展


大环境下,未来几年是国际车企全面进军新能源汽车的关键时期,海外龙头纷纷把发展新能源列入既定战略,其中不乏看好固态电池前景的龙头车企。


丰田已投入200多人进行固态电池开发,目标在2025年前推出产品,宝马正与固态电池公司SolidEnergy合作共同开发固态电池,大众表示看好固态电池前景,并入股研发固态电池的创业公司QuantumScape。


此外,从今年5月起,日本政府将出资16亿日元,联合国内丰田、本田、日产、松下、GS汤浅、东丽、旭化成、三井化学、三菱化学等大型汽车厂商、电池和材料厂商,共同研发固态电池。巨头们的加码布局与资本的加速注入,行业发展进入快车道。


此外,未来有望通过规模效应快速降本。回溯传统锂电成本曲线,14年时单位成本接近3元/Wh,而随着产能迅速扩张,目前成本已降至1.2元Wh/kg左右。


固态电池作为一项颠覆性技术,技术一旦突围成功,行业成长曲线料将获指数级增长,工业化大批量生产将使成本问题迎刃而解,传统锂电的降本逻辑有望得到复制。


参考SNEresearch的动力电池出货量预测,若固态电池能在2022年实现市场化并逐步提升渗透,到2025年固态电池在动力电池中的市场空间大约能达到60亿元左右。


毋庸置疑,锂电产业链是一个可以看至少10年的行业,而新技术的开发与崛起也将不断强化行业的估值与前景。在行业看好与多方布局之下,固态电池产业有望获得超速发展。


固态电池承载着电池安全与能量全面提升的光荣使命,未来有望成为行业的新爆发点与关键性技术保障,政策在逐渐褪去,市场正回归理性,当新能源汽车回归商品属性时,还有技术在前方保驾护航。报告来源:华创证券(胡毅)百度搜索“乐晴智库”获得更多行业报告。


相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号