锂离子电池包技术发展缓慢,电池技术何时才会有突破?锂离子电池包它之所以发展得那么慢,很大程度上是因为几乎每一点微小的进步或改变,都要经过大量的实验和测试,以保证安全和稳定。即使是发现了关于提升能量密度很有帮助的材料,都不能保证它真的能用。
近些年来,研究人员努力提高锂离子电池包的能量密度、价值、安全性、环境影响以及试用寿命,并在设计全新类型的电池。那么,电池技术何时才能有革命性的突破?
一、传统锂离子电池包技术发展缓慢,进一步优化的空间有限
消费电子、汽车和电网存储是目前电池重要应用的三个行业。小编把这三个行业称为人们与电池连接的三大领域。每个领域对电池都有不同的要求,因此所使用的电池也可能大不相同。
在你口袋里的手机要结实、安全的电池,重量和成本倒不用太考虑。
而关于汽车电池行业而言,要的电池很多,因此成本和重量以及循环使用寿命(假如新特斯拉每两年要更换一次新电池,你会抓狂的)就变得十分重要。
用于存储房屋和电网的电力的电池对重量或尺寸要求则不高。
几乎电子行业的每一个部分都要电池,从而也都受到电池的功率输出和能量寿命的限制。电池的发展或进步比其他领域慢得多,这是电池本身的局限性,你不能指望有能给手机供电一周或一个月的电池。因为,存储在电池中的最大能量是由固有的元素决定。
由于锂离子是最轻的碱金属元素,拥有着更小、更轻、能量密度更高的特性,所以迅速取代了镍电池。在锂离子电池包的构成物质中,有磷酸铁、锰、石墨、钛酸盐等其他金属和非金属材料,但要靠着“锂离子”这个元素在正、负极中的嵌入与脱出,才可实现电能与化学能的相互转化,最终完成充放电过程。
然而,锂离子电池包的技术进步发展缓慢。目前锂离子电池在能量密度、高低温特性、倍率性能上,都远远高于铅酸、镍氢电池,但还是难以满足快速上升的电子产品、电动汽车等的需求。现在传统锂离子电池技术已接近瓶颈,进一步优化的空间有限。
二、科学家正致力于研发新型锂离子电池
目前,科学家正致力于研发储能更强、寿命更长的新型电池,特别是在不同的领域开发出更为适合的电池,因为没有一种电池可以适用所有领域。
1、不久前,我国科学家开发出一种可在零下70摄氏度使用的锂离子电池,未来有望在地球极寒地区,甚至外太空使用,听起来真是“吊炸天”。据研究人员称,这种新电池使用的材料成本不高,还环保,但要想将其商业化尚有待时日,重要问题是其能量密度太低,还比不上传统的锂离子电池包。
2、在汽车行业中,电池最终决定了汽车的寿命,也决定了人们关于电动汽车的恐惧和焦虑。为了解决这个问题,工程师和科学家正在尝试将更多的电压容量填充到电池中。目前,大量的研究致力于寻找新的材料和化学品以辅助或替换锂离子晶格或电池的其它部分。
例如一些创新的做法,将传统的石墨阳极晶格可以替换为硅,会拥有10倍多的锂离子,但硅在吸收锂离子时会膨胀,所以研究者们要解决这个问题;将锂金属代替晶格充当阳极,但是有可能它在充电时会发生短路。而这是自锂离子电池问世二三十年以来,令电池制造商一直头疼的老大难问题。
3、琢磨电池的“心脏”——电极/电解液界面。在所有的环境因素中,温度对电池的充放电性能影响最大。我国复旦大学化学系、新能源研究院教授夏永姚带领团队开发出耐寒新电池,采用凝固点低、可在极端低温条件下导电的乙酸乙酯作为电解液,并使用两种有机化合物分别作为电极的阴极和阳极。
乙酸乙酯电解液和有机高分子电极让可充电电池在零下70摄氏度的极低温条件下工作。”新电池的材料充足、便宜且环保,他预计这种材料的价格只有传统锂离子电池电极材料的约三分之一。
要了解,在俄罗斯和加拿大等极寒地区,温度低于零下50摄氏度;在太空中,温度低至零下157摄氏度。而传统锂离子电池包在零下20摄氏度时性能只有其最优水平的50%,零下40摄氏度时只有最优水平的12%。
新电池目前还是在实验室阶段,实现产品化面对的重要挑战是这种电池的单位质量能量与已商业化的锂离子电池尚有差距,生产过程还需优化,但具显着应用潜力,因此,正在努力攻克难题。
三、使用石墨烯材料的电池表现出色
石墨烯材料
既然锂离子电池包技术遇到瓶颈,人们就想到一些另辟蹊径的办法,间接有效解决用户对续航的需求,而在研究中发现,使用石墨烯材料的电池表现出色。
据介绍,采用石墨烯材料的电池重要优势在于其使用寿命、充电速度、耐高温。石墨烯电池2000次充放电衰减率15%以内,同比普通锂离子电池约40-80%,充电速度5000毫安时的半小时可以充满,假如电路设计合适,理论上可以5秒以内充满。与此同时,通过利用石墨烯高效散热的特点,同等工况下电池温度降低5℃。
但是,目前有关石墨烯材料的电池的技术研究大多处于实验室阶段,尚未达到实用化,离大批量生产还有很长的路要走。
四、超级电容技术应用前景广阔
超级电容器
超级电容器之所以称之为“超级”的原因,在于其是一种介于传统电容器与电池之间、具有特殊性能的电源,重要依靠双电层和氧化还原赝电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。其在分离出的电荷中存储能量,用于存储电荷的面积越大、分离出的电荷越密集,其电容量越大。由此,庞大的表面积再加上非常小的电荷分离距离使得它较传统电容器而言,有惊人大的静电容量。
相比传统的化学电池,以大容量、高功率、长寿命、成本低廉和环保等优越性能着称的超级电容器,具有非常大的应用前景。随着技术不断发展,推动其应用范围从最初的电子设备领域扩展到动力、储能领域。
虽然锂离子电池包技术发展缓慢,但是研究人员正在设计新型锂离子电池,我相信,锂离子电池技术突破指日可待,并且会研发创造出更优质、更受欢迎的锂离子电池。