简述全固态聚合物锂离子电池的传输机理

2021-04-08      2959 次浏览

关于聚合物电解质来说想要进行离子传输,首先必须含有一些极性基团,例如-O-,=O,-S-,-N-,-P-,C=O,C≡N等,这些基团能与Li+进行配位,进而溶解锂盐,出现自由移动的离子。目前大部分研究认为聚合物电解质中的离子传输只发生在玻璃化转变温度(Tg)以上的无定形区域,因此链段的运动能力也是离子传输的关键。如图2表示,具体说来就是锂离子在特定位置与聚合物链上的极性基团配位,通过聚合物链局部的链段运动,出现自由体积,从而使锂离子在链内与链间实现传导。


由于聚合物电解质离子传输机制的复杂性,其电导率随温度变化的关系不能通过一个物理模型简单地描述,其一般遵循两种机理Arrhenius型或Vogel-Tamman-Fulcher(VTF)型或是两者的结合。


指前因子σ0与载流子的数目相关,离子传输的活化能Ea可以通过logσ与1/T的线性拟合得出。符合Arrhenius型的行为时,一般离子传输与聚合物的链段运动无关,比如在Tg温度以下的无定形聚合物、玻璃相、无机离子导体等。


VTF型能更好地描述聚合物电解质的离子导电行为,其可用公式(2)表示:


B与活化能大小有关(B=Ea/k),T0是热力学平衡状态下的玻璃化转变温度(T0=Tg-50K)。符合VTF型的行为时,一般离子传输与聚合物链段的长程运动相关,所以用该模型能更好地描述全固态聚合物电池的电解质的在Tg以上的离子导电行为,同时其还适用于凝胶电解质、离子液体体系等。如前所述,聚合物的离子传输是通过无定形区域的链段运动实现的,室温离子电导率低也是全固态聚合物电解质最重要的问题,为了提高离子电导率,重要从两点出发:


1、新增聚合物基体无定形相的百分数;


2、降低玻璃化转变温度,同时也要兼顾其他性能需求。


为此,相关研究人员做了大量的改性工作,本文将从几种改性方法入手,简单地介绍一下当前的一些研究进展。


1、共混


通过聚合物共混的方式能够新增聚合物电解质的无定形区域,同时也能综合多种聚合物的优点,提高综合性能。


R.J.Sengwa等将PEO与PMMA共混,既提高了PMMA的柔韧性、减少了其脆性,同时也新增了PEO的无定形区域,当PEO含量为92wt%时,电导率达到了2.02×10-5S/cm(30℃),比纯的PEO或PMMA相比提高了1-2个数量级。


Zhang等则将PEO与PCA以5:1的质量比共混,共混后再将其涂布在自制的纤维素膜上,获得的电解质膜具有优异的综合性能:离子电导率达到了1.3×10-5S/cm(20℃),优异的力学性能和热稳定性,4.6V的电化学窗口,以及良好的倍率性能和界面稳定性。


相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号