锂离子电池的特点性能基本有什么?

2021-01-30      1102 次浏览

锂离子电池的安全性归根到底一句话,就是来自于电池的热失控。锂离子电池除了正常的充放电反应外,还存在潜在的副反应。当电池温度过高或者充电电压过高的时候,这些副反应就会被引发,并释放大量热量。假如热量得不到及时疏散,还会引起电池温度和压力的急剧上升,形成恶性循环,最后导致热失控,造成安全事故。


不幸的是,从锂电反应机理而言,单体电池的热失控隐患是无法根除的,只能通过诸如热控制技术(PTC电极)、正负极表面陶瓷涂层、过充保护添加剂、电压敏感隔膜以及阻燃性电解液等等技术的综合性应用来无限改善单体电芯的安全性能,但无法真正根除。


有关电芯层面的锂电安全性,武汉大学教授艾新平做了非常全面的分析,从热失控过程来看,发生热失控最早的一个反应是负极表面SEI膜的分解,由于负极成份及添加剂的不同,SEI膜的分解分度大概在120-140℃,发生分解以后,负极裸露在电解液中,并发生剧烈的还原分解,放出大量的可燃性气体和热量,促使电池的温度进一步上升,直至正极发生分解。


正极发生分解时,温度大概在180-200℃,此时电芯的副反应就很难控制了,因为正极分解时不仅仅释放大量的热量,还会出现活性极高的氧原子,导致电解液直接氧化分解,短时间内会造成电池内部大量的热量积累。


值得一提的是,温度和副反应的关系是相辅相成的正相关,即温度越高,副反应越剧烈;副反应越剧烈,温度也就越高。这样的恶性循环最后会导致电池进入一个没法控制的自加温状态,也就是所谓的热失控。


业内常说的磷酸铁锂安全性好,就是因为它作为正极在200-400℃的时候基本不发生分解,但正极的产热只是副反应的一部分,负极和电解液的氧化分解仍然存在,所以磷酸铁锂的安全性只是相对三元而言稍微安全一些而已。三元材料根据组成成份的不同,分解温度有所变化,镍占比越高,热分解温度越低,比如当镍含量达到0.8,在120度左右就开始发生热分解,甚至早于负极的SEI膜,这对电池的温控造成了极大的挑战。


电池热失控,究其原因还是内部出现了短路和过充的现象。比如涂层,电解液分布不均、电极间距不均会引起电流分布不均从而导致局部过充;在循环过程中正极性能衰竭过快,也会导致过充;另外BMS死机或者功能障碍、充电继电器不能正常工作,这些都会导致过充。内部短路同样复杂,电解液分布不均导致局部析锂;正极材料中的金属杂质,氧化后在负极表面还愿;充放电的反复体积变化等等因素都是短路的隐患。同时,我们无法在工艺层面保证清除所有的安全隐患,就像世间不会有两片相同的叶子相同。


锂离子电池副反应的安全性隐患是其电化学体系所决定的,并伴随电池比能量提高而变得愈加严重,即便再出色的电池管理系统(BMS)也无法从根本上解决锂离子动力锂电池的安全性问题。同济大学教授叶际平也在演讲中表示,BMS一个很大的问题就是不能像脑神经跟器官一般了解冷暖自如,BMS能够控制电池,但是电池里面的材料变化它无法反馈到BMS里面去。


如何提升单体电芯的安全性能?


尽管锂电安全无法根治,但却是可控可防的,正确面对并积极探索一些新的安全性技术,将有利于促进电池技术进步,比如提高材料/界面热稳定性,开发单体自激发热保护技术,以及系统热扩展防范技术,就可以有效改善电池系统的安全性。以下为艾新平教授在电芯安全层面的研究,可供读者参考。


表面包覆。正极的热分解和它引起的析氧重要在于它和界面(电解液)的反应,于是我们可以在正极活性表面包覆热稳定的保护层。比如在高镍的正极表面包覆磷酸膜或者磷酸锂以后,可以减少高镍材料与电解液的直接接触,从而降低副反应的强度和产热。常见的包覆材料包括磷酸盐、氧化物、氟化物,也可以是一些聚合物。


构建浓度梯度。高镍正极的不安全,除了本身的热稳定性不好以外,更重要的是镍对电解液的氧化分解用途非常强,而材料本身的放热量并不是那么大,但是加上电解液以后,它的产热温度和产热量是急剧提高的,原因就是电解液的界面反应占了很大的部分。假如我们将高镍作为核,用一些低镍含量的材料作为壳,让它内外有一个浓度梯度,这样就有助于降低这个材料界面的反应活性,提高电池安全性。


相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号