摘要:电动汽车蓄电池组的工作状态重要指各电池在工作时的端电压、工作电流和温度5个参数的变化情况。对电池工作状态的检测通常有集中式检测法和分布式检测法,采用“部分”集中、“整体”分布的思路,将电池分成若干分组,每个分组集中检测,各分组分布检测,同时,采用“桥电容”技术解决了蓄电池组单体端电压检测中存在的参考点选择和被测电池与检测设备隔离的问题,形成了一种具有完全隔离功能的集中/分布式检测法。经过试验,该检测法电压、电流和温度采集功能正常,数据准确、可靠。关键词:电动汽车;汽车工程;电池;集中/分布检测
0引言蓄电池技术是下一代汽车――电动汽车的核心技术之一。蓄电池是复杂的电化学系统,国内外对电池管理技术都进行了大量的研究,取得了许多成果。一般认为电池管理系统重要有如下功能:电池状态参数采集(包括温度、电压、电流等);电池荷电状态(Stateofcharge,SOC)的准确估计;不健康电池的早期诊断;对电池组安全运行全面监控,如防止电池的过充电和过放电等等。由于电动汽车蓄电池组通常是由几十个(上百个)单体电池组成,所以,每一个单体电池的工作状态正常与否不仅反映电池组性能的好坏,而且影响电池组的容量及剩余能量。实践表明,在电动汽车运行过程中,如不及时检测,找出老化电池给予调整,电池组的容量将变小,寿命将缩短,影响整个电池组的高效安全运行。电池工作状态的检测由电池管理系统(BatteryManagementSystem,BMS)完成,而电池管理系统的其他功能(包括剩余能量的计算)都是建立在电池工作状态检测的基础之上的,研究蓄电池组工作状态检测方法对电动汽车的发展具有非常重要的意义。
lBMS的基本结构湖南大学研发的电动汽车(EV一3号)采用的BMS结构示意图见图1。该BMS由电池监测系统、电池核电状态、(SOC)系统、数据显示系统3部分构成。传感器、电池监控系统和SOC系统构成底层系统,数据显示系统为上层系统,系统之间通过内部CAN总线通信。
2蓄电池组工作状态检测方法电动汽车蓄电池组一般都采用串联方式工作,工作电流与单体电池是相同的,检测比较容易,而端电压的检测则比较麻烦。若只检测电池组的端电压,方法很简单,只需在电池组的两端接上检测电路即可,但这样做是不行的,因为虽然可以得到总的工作电压,但无法判断具体单体电池的端电压,而只要有一块电池出问题就会影响整组电池的正常工作和性能;另外,对检测电路精度要求高。一个单体电池端电压的正常工作范围比较小,比如12V铅酸电池的终止电压在10V左右,电压变化范围在2~3V之间,检测电路只要10%的精度即可检测出1V的变化量。若24块12V铅酸电池串联,额定电压是288V,放电终止电压是240V,电压的正常变化范围是48V,假如一块电池的端电压降至9V,那么反映在总电压上为285V,只变化了大约1%。可见,检测电路的精度至少要达到1%以上才能检测出几伏电压的变化。而整组电池检测很难发现单体电池的缓慢变化,包括单体电池本身的老化和因单体电池一致性问题而带来的积累效应。整组检测无法检测电池及电池组实际容量,无法筛选其中已老化的电池。实用的方法是检测每一个单体电池。但关于串联形成的电池组,要自动检测每个单体电池的端电压所遇到的重要问题是测量参考点的选择以及检测电路与被检测电池组的电隔离问题。电位参考点的选择不仅如上所述影响测量精度,还对测量电路的测量范围提出了很高的要求。而被检测电池组与检测电路的隔离不仅涉及到系统的安全还影响检测电路的复杂度和可实现性。目前采用的重要是分布检测和集中检测两种方法。1)分布检测法所谓分布式隔离检测技术,就是将单体电池电压及温度的检测模块化、本地化,然后再通过一定的通讯手段将这些检测模块检测的数据集中起来,最后统一处理。这样做的目的就是要解决集中检测方法所存在的种种问题。原理图见图2。
其重要优点是:(1)连线简单,省去了多路转换开关,性能可靠。(2)测量精度较高,比较符合汽车电器CAN总线化的发展趋势。(3)分布式模块解决了参考点问题,利用总线通信方式(采用光耦器件)解决了主控机与电池组的隔离问题。但应用分布式检测技术还必须解决以下几个问题:(1)由于检测模块直接从被测电池上持续取电,不利于节能和安全。(2)当电池较多时,模块数量也多,使得成本和复杂度提高,并且要求通信总线有较高的带载能力。从功能上看,检测模块重要由检测子模块和通信子模块两大部分组成。检测子模块要完成数据的采集和调理任务,而通信子模块则要沟通与主控电路的信息交流,接收主控电路的指令,上传由检测子模块供应的检测数据。因为汽车电器的发展方向是采用CAN总线技术,所以,通信子模块与主控电路之间应该采用CAN总线连接。