PID效应与逆变器防治技术

2020-02-09      1703 次浏览

在2005年,美国著名光伏制造商SUNpOWER公司提出了一个新的发现。这种现象称之为表面极化。当在组件上施加一个反向高压时,会发生表面极化现象。电池的表面会随着时间累积负电荷。这些电荷会将正电荷吸引到电池表面,形成复合中心。相反,当组件上施加负电压时,极化现象也相应改变,这种情况下组件的性能不会有影响。这是最著名的pID(potenTIalInducedDegradaTIon)现象。经过研究发现,pID现象一般是一种可逆的表面极化现象。


pID有什么危害?


我国传统的装机大省已经从西北部向东南部转移。相对于西北的干旱、多风沙气候,东南部的湿热气候对光伏电站的影响截然不同,pID问题已成为影响光伏电站发电量的重要因素之一。特别是在温度高、湿度大的东部分布式屋顶、渔光互补等电站,发生pID的概率大大增加。


实际光伏电站现场测试发现,在建成1至2年后出现部分组件功率大幅下降的现象,有些组件功率衰减竟高达50%以上。组件衰减诱因很多,如光致衰减、老化衰减、隐裂、电池片破裂等,其中重要原因之一是组件pID效应。下图为pID效应的红外照片,pID效应严重的电池片发黑。



图1:pID效应的红外照片


SMA进行了相关实验验证,以下是相关实验情况,大家可以发现,仅仅几十个小时之后,组件功率特性发生了很大衰减。



图2:实验模拟图



图3:实验结果


国内实验数据显示,2年可衰减了54.4%!可见,pID效应对组件输出功率影响巨大,是光伏电站发电量的恐怖杀手。


pID效应的防治


首先是组件厂家从材料、结构等方面做了大量的工作并取得了一定的进展;如可采用抗pID材料、防pID电池和封装技术等。采用非乙烯醋酸乙烯共聚物的封装材料、采用无边框组件或双玻组件等,都可以在一定程度上减少pID效应。


本文着重介绍如何从逆变器侧进行pID防治,逆变器侧的防治大致有三种解决方案:


第一种是负极接地,我们在pID效应中介绍了,pID是因为组件负极对大地产生了负压导致的,对应的我们可以采用负极接地的方法来减少这种衰减;将光伏组件或逆变器的负极通过电阻或保险丝直接接地,使电池板负极对大地的电压与接地金属边框保持在等电位,消除负偏压,该方案多用于集中式逆变器,并且会带来面板电压升高,有电击风险,组串式由于一般不带隔离变压器等因素很少这么应用;



图4:负极接地方案示意图



图5:不同逆变器负极对大地的负电压不同


第二种是负极虚拟接地,集中式和组串式都可以使用负极虚拟接地的方法防治pID效应,该方案同样会带来面板电压升高,有电击风险。



图6:负极虚拟接地方案示意图


第三种方案是由SMA公司提出的夜间修复方案,我们在前面pID效应中已经提出了,pID效应是可逆的,通过夜间对pV负极(或正极)对大地进行一定电压的浮充,可修复面板的相关特性;offset技术不改变直流侧工作电压,能有效修复面板衰减;SMA中国更进一步,将此技术集成到逆变器内部集成到逆变器内部,更加经济高效。



图7:夜间浮充技术


说明:负极接地或虚拟负极接地的防pID逆变器技术,都存在抬升电压的问题,带来触电危险,需要加强电站安全管理,而采用夜间浮充技术没有这个问题,尤其是集成到逆变器内部是很好的解决方案。


防治案例与效应情况


逆变器pV负极接地的案例,选取了某实际电站中同一地点,各种条件基本相同的两个光伏方阵,其中有采用的集中式逆变器不具备防pID功能,也有采用具备防pID功能。测试发现:安装了pID模块的集中式逆变器可以有效地防止组件pID衰减,大幅度降低发电量损失。



表一:集中型负极接地对比结果


采用夜间修复逆变器技术的案例结果



表二:采用SMA夜间修复技术后的结果


(备注:部分实验数据引用了了设计院光伏同行王淑娟的数据)


总结


随着中国光伏产业从西到东,从北到南,温湿度对组件的pID影响越来越大,影响光伏电站面板的寿命和客户收益,对整个产业的健康发展构成影响;在光伏电站中采用抗pID技术也越来越受到重视,越来越多的光伏电站要求逆变器具备抗pID的技术。


SMA中国提供完整pID解决方案,尤其是逆变器内部集成夜间浮充技术,性价比高。


技术专区可用于高电压测试的有源负载直流二倍压升压电路图(CD4069/LTC3786/电容式倍压升压电路)直流二倍压整流电路图(多谐振荡电路/时基电路NE555/变压器)交流转直流电路图大全(逆变电源/升压电源/交流直流转换器)48v转12v转换器电路图(五款48v转12v转换器电路原理图详解)

相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号