硅基锂电池负极材料的研究进展及应用前景

2019-09-09      1071 次浏览

硅是目前已知比容量(4200mAh/g)最高的锂离子电池负极材料,但由于其巨大的体积效应(>300%),硅电极材料在充放电过程中会粉化而从集流体上剥落,使得活性物质与活性物质、活性物质与集流体之间失去电接触,同时不断形成新的固相电解质层SEI,最终导致电化学性能的恶化。近年来,研究者们做了大量的研究和探索,尝试解决这些问题并取得了一定的成效,本文表述了该领域的研究进展,并提出进一步的研究方向和应用前景。


硅的脱嵌锂机理和容量衰减机制


硅不具有石墨基材料的层状结构,其储锂机制和其他金属一样,是通过与锂离子的合金化和去合金化进行的,其充放电电极反应可以写作下式:


Si+xLi++xe-=LixSi


图1硅基锂离子电池原理图:(a)充电;(b)放电


在与锂离子发生合金与去合金化过程中,硅的结构会经历一系列的变化,而硅锂合金的结构转变和稳定性直接关系到电子的输送。


根据硅的脱嵌锂机理,我们可以把硅的容量衰减机制归纳如下:


(1)在首次放电过程中,随着电压的下降,首先形成嵌锂硅与未嵌锂晶态硅两相共存的核壳结构。随着嵌锂深度的增加,锂离子与内部晶体硅反应生成硅锂合金,最终以Li15Si4的合金形式存在。这一过程中相比于原始状态硅体积变大约3倍,巨大的体积效应导致硅电极的结构破坏,活性物质与集流体'活性物质与活性物质之间失去电接触,锂离子的脱嵌过程不能顺利进行,造成巨大的不可逆容量。


(2)巨大的体积效应还会影响到SEI的形成,随着脱嵌锂过程的进行,硅表面的SEI会随着体积膨胀而破裂再形成,使得SEI越来越厚。由于SEI的形成会消耗锂离子,因而造成了较大的不可逆容量。同时SEI较差的导电性还会使得电极的阻抗随着充放电过程不断增大,阻碍集流体与活性物质的电接触,增加了锂离子的扩散距离,阻碍锂离子的顺利脱嵌,造成容量的快速衰减。同时较厚的SEI还会造成较大的机械应力,对电极结构造成进一步破坏。


(3)不稳定的SEI层还会使得硅及硅锂合金与电解液直接接触而损耗,造成容量损失。


相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号