从正负极材料和电解液解析锂电池低温性能改善

2019-09-09      1383 次浏览

锂离子电池以其高比能量及功率密度、长循环寿命、环境友好等特点在消费类电子产品、电动汽车和储能等领域得到了广泛的应用。作为新能源汽车的动力源,锂离子电池在实际应用中仍存在较多问题,如低温条件下能量密度明显降低,循环寿命也相应受到影响,这也严重限制锂离子电池的规模使用。


目前,研究者们对造成锂离子电池低温性能差的主要因素尚有争论,但究其原因有以下3个方面的因素:


1..低温下电解液的粘度增大,电导率降低;


2.电解液/电极界面膜阻抗和电荷转移阻抗增大;


3.锂离子在活性物质本体中的迁移速率降低.由此造成低温下电极极化加剧,充放电容量减小。


另外,低温充电过程中尤其是低温大倍率充电时,负极将出现锂金属析出与沉积,沉积的金属锂易与电解液发生不可逆反应消耗大量的电解液,同时使SEI膜厚度进一步增加,导致电池负极表面膜的阻抗进一步增大,电池极化再次增强,最将会极大破坏电池的低温性能、循环寿命及安全性能。


本文综述了锂离子电池低温性能的研究进展,系统地分析了锂离子电池低温性能的主要限制因素。从正极、电解液、负极三个方面讨论了近年来研究者们提高电池低温性能的改性方法。


一、正极材料


正极材料是制造锂离子电池关键材料之一,其性能直接影响电池的各项指标,而材料的结构对锂离子电池的低温性能具有重要的影响。


橄榄石结构的LiFePO4放电比容量高、放电平台平稳、结构稳定、循环性能优异、原料丰富等优点,是锂离子动力电池主流正极材料。但是磷酸铁锂属于Pnma空间群,P占据四面体位置,过渡金属M占据八面体位置,Li原子沿[010]轴一维方向形成迁移通道,这种一维的离子通道导致了锂离子只能有序地以单一方式脱出或者嵌入,严重影响了锂离子在该材料中的扩散能力。尤其在低温下本体中锂离子的扩散进一步受阻造成阻抗增大,导致极化更加严重,低温性能较差。


镍钴锰基LiNixCoyMn1-x-yO2是近年来开发的一类新型固溶体材料,具有类似于LiCoO2的α-NaFeO2单相层状结构。该材料具有可逆比容量高,循环稳定性好、成本适中等重要优点,同样在动力电池领域实现了成功应用,并且应用规模得到迅速发展。但是也存在一些亟需解决的问题,如电子导电率低、大倍率稳定性差,尤其是随着镍含量的提高,材料的高低温性能变差等问题。


富锂锰基层状正极材料具有更高的放电比容量,有望成为下一代锂离子电池正极材料。然而富锂锰基在实际应用中存在诸多问题:首次不可逆容量高,在充放电的过程中易由层状结构向尖晶石结构转变,使得Li+的扩散通道被迁移过来的过渡金属离子堵塞,造成容量衰减严重,同时本身离子以及电子导电性不佳,导致倍率性能和低温性能不佳。


改善正极材料在低温下离子扩散性能的主流方式有:


1采用导电性优异的材料对活性物质本体进行表面包覆的方法提升正极材料界面的电导率,降低界面阻抗,同时减少正极材料和电解液的副反应,稳定材料结构。


Rui等采用循环伏安和交流阻抗法对碳包覆的LiFePO4的低温性能进行了研究,发现随着温度的降低其放电容量逐渐降低,-20°C时容量仅为常温容量的33%。作者认为随着温度降低,电池中电荷转移阻抗和韦伯阻抗逐渐变大,CV曲线中的氧化还原电位的差值增大,这表明在低温下锂离子在材料中的扩散减慢,电池的法拉第反应动力学速率减弱造成极化明显增大(图1)。


图1LFP/C在不同温度下的CV(A)和EIS(B)曲线图


Lv等设计合成了一种快离子导体包覆镍钴锰酸锂的复合正极材料,该复合材料显示出优越的低温性能和倍率性能,在-20°C仍保持127.7mAh·g-1的可逆容量,远优于镍钴锰酸锂材料86.4mAh·g-1。通过引入具有优异离子电导率的快离子导体来有效改善Li+扩散速率,为锂离子电池低温性能改善提供了新思路。


2通过Mn、Al、Cr、Mg、F等元素对材料本体进行体相掺杂,增加材料的层间距来提高Li+在本体中的扩散速率,降低Li+的扩散阻抗,进而提升电池的低温性能。


Zeng等采用Mn掺杂制备碳包覆的LiFePO4正极材料,相比原始LiFePO4,其在不同温度下的极化均有一定程度的减小,显著提升材料低温下的电化学性能。Li等对LiNi0.5Co0.2Mn0.3O2材料进行Al掺杂,发现Al增大了材料的层间距,降低了锂离子在材料中的扩散阻抗,使其在低温下的克容量大大提高。


磷酸铁锂正极材料在充电过程从磷酸铁锂相至磷酸铁相间的相转变比放电过程从磷酸铁相至磷酸铁锂相间的相转变更缓慢,而Cr掺杂可促进放电过程从磷酸铁相至磷酸铁锂相间的相转变,从而改善LiFePO4的倍率性能和低温性能。


3降低材料粒径,缩短Li+迁移路径。需要指出的是,该方法会增大材料的比表面积从而与电解液的副反应增多。


Zhao等研究了粒径对碳包覆LiFePO4材料低温性能的影响,发现在-20°C下材料的放电容量随着粒径的减小而增大,这是因为锂离子的扩散距离缩短,使脱嵌锂的过程变得更加容易。Sun等研究表明,随着温度的降低LiFePO4的放电性能显著降低,粒径小的材料具有较高的容量和放电平台。


相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号