影响锂离子电池的安全性的主要因素有哪些?

2019-07-05      2901 次浏览

电池内部热失控阶段


由于内部短路、外部加热,或者电池自身在大电流充放电时自身发热,使电池内部温度升高到90℃~100℃左右,锂盐LiPF6开始分解;对于充电状态的碳负极化学活性非常高,接近金属锂,在高温下表面的SEI膜分解,嵌入石墨的锂离子与电解液、黏结剂会发生反应,进一步把电池温度推高到150℃,此温度下又有新的剧烈放热反应发生,例如电解质大量分解,生成PF5,PF5进一步催化有机溶剂发生分解反应等。


第2阶段:电池鼓包阶段


电池温度达到200℃之上时,正极材料分解,释放出大量热和气体,持续升温。250-350℃嵌锂态负极开始与电解液发生反应。


第3阶段:电池热失控,爆炸失效阶段


在反应发生过程中,充电态正极材料开始发生剧烈分解反应,电解液发生剧烈的氧化反应,释放出大量的热,产生高温和大量气体,电池发生燃烧爆炸。


锂离子电池材料的安全性


负极材料


负极材料虽然比较稳定,但嵌锂状态下的碳负极在高温下会


负极与电解液之间的反应包括以下三个部分:SEI的分解;嵌入负极的锂与电解液的反应;嵌入负极的锂与黏结剂的反应。常温下电子绝缘的SEI膜能够防止电解液的进一步分解反应。但在100℃左右会发生SEI膜的分解反应。SEI放热分解反应的反应式如下:


尽管SEI分解反应热相对较小,但其反应起始温度较低,会在一定程度上增加负极片的“燃烧”扩散速度。


在更高温度下,负极表面失去了SEI膜的保护,嵌入负极的锂将与电解液溶剂直接反应有C2H4O产生,可能为乙醛或氧化乙烯。嵌入锂的石墨在300℃以上与熔融的PVDF–HPF共聚物发生如下反应:


反应热随着嵌锂程度的增加而增加,反应热随黏结剂种类不同而不同。通过成膜添加剂或锂盐增加其热稳定性。降低嵌入负极的锂与电解液反应热的途径包括以下两个方面:减少嵌入负极的锂和减小负极的比表面积。减少嵌入负极的锂是说在正负极的配比上一定要适当,负极要过量3%~8%左右。降低负极的比表面也可以有效改进电池的安全性,有文献报道,碳负极材料比表面从0.4m2·g–1增加到9.2m2·g–1时,反应速率增加了两个数量级。但如果比表面过低将会降低电池的倍率性能和低温性能。这需要通过合理的负极结构设计和电解液配方优化,提高锂离子在负极固相扩散速率和获得具有良好离子导电率的SEI膜。另外,尽管黏结剂在负极中的重量比十分小,但是其与电解液的反应热十分可观。因此,通过减少黏结剂的量或选择合适的黏结剂将有利于改善电池的安全性能。


文献通过对专利的分析也认为解决碳负极材料安全性的方法主要有降低负极材料的比表面积、提高SEI膜的热稳定性。在现有的国内专利申请中,改进负极材料及结构进而提高电池安全性能的相关技术。


正极材料


常见的正极材料在温度低于650℃时是稳定的,在充电时处于亚稳定状态,温度升高时发生如下反应。


对正极材料热稳定性分析可得出以下几点结论:


第一,正极材料与溶剂的反应机理有待深入研究;


第二,正极的分解反应及其与电解液的反应放热量比较大,在大多数情况下是造成电池爆炸的主要原因;


第三,采用三元或LFP正极材料相对LCO可以提高电池的安全性。


电解液


锂离子电池电解液基本上是有机碳酸酯类物质,是一类易燃物。常用电解质盐六氟磷酸锂存在热分解放热反应。因此提高电解液的安全性对动力锂离子电池的安全性控制至关重要。


LiPF6的热稳定性是影响电解液热稳定的主要因素。因此,目前主要改善方法是采用热稳定性更好的锂盐。但由于电解液本身分解的反应热十分小,对电池安全性能影响十分有限。对电池安全性影响更大的是其易燃性。降低电解液可燃性的途径主要是采用阻燃添加剂。


目前,引起人们重视的锂盐有LiFSI[双(氟磺酸)亚胺锂]和硼基锂盐。其中,双草酸硼酸锂(LiBOB)的热稳定性较高,分解温度为302℃,可在负极形成稳定的SEI膜。LiBOB作为锂盐和添加剂可以改进电池的热稳定性。另外,二氟草酸硼酸锂(LiODFB)结合了LiBOB和四氟硼酸锂(LiBF4)的优势,也有希望用于锂电池的电解液中。


除了电解质盐的改进,还应采用阻燃添加剂改进电池的安全性能。电解液中的溶剂之所以会发生燃烧,是因其本身发生了链式反应,如能在电解液中添加高沸点、高闪点的阻燃剂,可改善锂离子电池的安全性。已报道的阻燃添加剂主要包括三类:有机磷系、氟代碳酸酯和复合阻燃添加剂。尽管有机磷系阻燃添加剂,具有较好的阻燃特性和良好的氧化稳定性,但其还原电位较高,与石墨负极不兼容,黏度也较高,导致电解液电导率降低和低温性能变差。加入EC等共溶剂或成膜添加剂可以有效提高其与石墨的兼容性,但降低了电解液的阻燃特性。复合阻燃添加剂通过卤化或引入多官能团能提高其综合性能。另外氟代碳酸酯由于其闪点高或无闪点、有利于在负极表面成膜、熔点低等特点,也具有较好的应用前景。


采用一种纳米级树枝状结构的高分子化合物(STOBA)对NCM(424)进行涂层,当锂电池发生异常,产生高温时,会形成一道薄膜阻隔锂离子间的流动,稳定锂电池,借以提高电池安全度。由下图可见,针刺实验时,正极材料未涂STOBA涂层的电池内部温度在几秒钟内升至700℃,而用STOBA涂层正极材料的电池温度最高只有150℃。


隔膜


目前,已商品化的锂离子电池隔膜主要有三类,分别为PP/PE/PP多层复合微孔膜、PP或PE单层微孔膜和涂布膜。广泛使用的隔膜主要为聚烯烃微孔膜,这种隔膜的化学结构稳定,力学强度优良,电化学稳定性好。


隔膜垂直方向上的机械强度越高,电池发生微短路的概率就越小;隔膜的热收缩率越小,电池的安全性能越好。隔膜的微孔关闭功能也是改进动力电池安全性的另一方法;凝胶类聚合物电解质具有较好的保液性,采用这种电解质的电池比常规液态电池具有更好的安全性;除此,陶瓷隔膜也可以改进电池的安全性。常见的国内专利文献对锂电池隔膜的制备和处理类型,见下表。


EIS由两层物质构成,内层主要成分是Li2CO3,而其外层主要成分是烷基碳酸锂如(CH2OCOLi)2等。当电池内部温度为80℃-120℃时,外层逐渐发生分解,放出热量生成气体,反应方程式如下。在SEI热解反应中,其反应温度和放热量与锂盐种类、溶剂组成、负极活物质及电池循环次数有关。1)电极材料特性,比如在大电流下工作有可能出现锂枝晶,从而刺破隔膜导致短路破坏;


2)电解液为有机液体,在高温下发生副反应、氧化分解、产生气体、发生燃烧的倾向都会加剧;


3)电池质量参差不齐,尤其是小厂家的电池安全性能不达标;


4)电池管理系统不合格,造成电池的过充放,导致危险的发生。


相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号