通过哪些设计与方案,可以提高锂离子电池的安全性?

2018-05-23      1512 次浏览

  锂离子电池的潜在安全性问题很大程度上影响了消费者的信心。虽然人们一直期待BMS能够准确地监控安全状况(SOS)并能预测和阻止一些故障的发生,但是,由于热失控的情况复杂多样,很难由一种技术系统保障其生命周期中所面临的所有安全状况,所以,对其引发原因的分析和研究对一个安全可靠的锂离子电池来说仍然是必要的。


  BMS电池管理系统


  电池管理系统(BMS)在动力电池的使用中被寄予解决关键问题的厚望。管理系统需要管理电池及其一致性,使其在不同条件下(温度,海拔高度,最大倍率,电荷状态,循环寿命……)获得最大的能量储存、往返效率和安全性。BMS包括一些通用的模块:数据采集器,通讯单元和电池状态(SOC,SOC,SOP……)评估模型。随着动力电池的发展,对BMS的管理能力要求也更多更严苛。增加了比如热量管理模块,高压监控模块……通过这些安全性模块的增加,可望改善动力电池在使用过程中的安全可靠性。


  电堆的集成设计


  电池发生热失控后会引发冒烟、起火、爆炸等具有破坏性的行为,危害到使用者的人身安全。即使选用理论上最安全的配置方式,也不足以让人高枕无忧。如选用LiFePO4和Li4Ti5O12做成安全而适用于快速充放电电池的正极和负极材料,他们的电动势都位于电解质的电化学窗口内,也不再需要SEI膜。但是,即是这样也会因为氧化还原电对会出现在阴离子的P轨道顶部或者和阳离子的4S轨道发生交叠而不足以应付该电极在一些工况下的工作情况。再合理的电芯设计和制造也无法避免使用工况中的意外情况发生,只有合理的电池包集成设计才可以让电堆在电芯出问题的情况下及时止损。


  如前所述,电池的安全性和续航能力在材料的层面是一对互相矛盾的结果。为了解决安全性和续航能力的平衡问题,TeslaMotorsCo.Ltd率先做出了典范给了我们很好的启示。特斯拉的ModelS使用了松下公司(PanasonicCo.Ltd)的高能量密度的NCR18650A型电池,在一个电堆中使用了7000多节电芯。这本是一个发生热失控几率很高的组合方式,但通过对电堆集成及其BMS的设计,使用了很多创新性专利,使ModelS在实际使用过程中发生安全事故的几率大大降低。以特斯拉的公开专利为例,其中对单体安全性能、模组module安全性能和电池pack总成安全性能的加强可以或多或少代表解决集成的先进办法。


  Tesla通过在电芯的电极处、外壳上添加防火材料和套管,在单体之间保持最小安全距离,采用垫片保持单体在起火后的间距维持不变,使用高效安全阀预测单体破裂位置,单体安全阀门阀门打开后即切断单体与电器的连接,从而防止单体电芯间的热量扩散和发生热失控之后引起的链式反应。同时,通过在电池的电极和电池壳的内表面之间布置绝热层,在模组间布置绝缘层,将Pack分区进行保护,从而阻隔模组间在发生热失控发生后的热量传导和失控扩散。这些措施从电芯到模组的层面,层层设防,以期在内部热失控发生后最大限度地及时止损。


  热失控预案设计


  对于热失控发生后的预案设计方式多种类,多层面,除了上述的各种集成时考虑的安全性设计外,还有布控冷却管道为电池冷却和热失控主动缓和系统启动喷出冷却液体以消减热失控产生的影响;子电堆安全阀门及时打开,让热失控产生的高温气体及时排出体系,再由总阀门排出;利用内置的其他系统吸收热失控高温产生的能量,降低危害……最后,一旦发生前序手段无法控制的情况,通过,在pack所在位置的底部加装防弹板,在乘员舱和pack层之间加阻热层以最大可能性减小热失控发生后所带来的人身伤害。这些设计不仅可以使内部热失控时的能量及时消减,也可以预见在电池层面彻底失去控制后,灾难性后果仍在掌控范围内从而从根本上保障使用者的人身安全。


相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号