与在阳极观测到的现象相似,阴极也具有显著的电势损失。为了纠正这一点,一些研究者们使用了赤血盐(hexacyanoferrate)溶液。但是,赤血盐并不是被空气中的氧气完全重氧化的,所以应该认为它是一个电子受体更甚于作为媒介。如果要达到可持续状态,MFC阴极最好是开放性的阴极。
物质解析
根据电子传递方式进行分类,微生物燃料电池可分为直接的和间接的微生物燃料电池。所谓直接的是指燃料在电极上氧化的同时,电子直接从燃料分子转移到电极,再由生物催化剂直接催化电极表面的反应,这种反应在化学中成为氧化还原反应;微生物燃料电池如果燃料是在电解液中或其它处所反应,电子通过氧化还原介体传递到电极上的电池就称为间接微生物燃料电池。根据电池中是否需要添加电子传递介体又可分为有介体和无介体微生物燃料电池。
分类介体
向微生物燃料电池中添加的介体主要有两种:第一类是人工合成的介体,主要是一些染料类的物质,如吩嗪、吩噻嗪、靛酚、硫堇等等。这些介体必须满足一定的条件:(1)能穿透进入微生物的细胞内发生氧化反应;(2)非常容易得电子;(3)在被还原之前能快速离开微生物细胞;(4)在阳极表面有很好的电化学活性;(5)稳定性好;(6)在阳极电解液中是可溶的;(7)对微生物没有毒性;(8)不会被微生物代谢掉。第二类是某些微生物自身可以合成介体,如PseudomonasaeruginosastrainKRP1能够合成绿脓菌素和吩嗪-1-甲酰胺等物质,它合成的介体不光自己可以使用,其它的微生物也可以利用它产生的介体传递电子。
作用原理
参与传递电子的介体与微生物和阳极之间的作用形式有三种:(1)微生物将氧化还原反应产生的电子直接传递给溶解在溶液中的介体,介体再将电子传递给电极;(2)介体能进入到微生物体内,参加反应被还原,从微生物体内出来后再将电子传递给电极;(3)微生物吸附在电极表面,它将反应产生的电子传递给在细胞表面的介体,再通过介体传递给电极。
优势
与现有的其它利用有机物产能的技术相比,微生物燃料电池具有操作上和功能上的优势:首先,它将底物直接转化为电能,保证了具有高的能量转化效率;其次,不同于现有的所有生物能处理,微生物燃料电池在常温环境条件下能够有效运作;第三,微生物燃料电池不需要进行废气处理,因为它所产生的废气的主要组分是二氧化碳,一般条件下不具有可再利用的能量;第四,微生物燃料电池不需要输入较大能量,因为若是单室微生物燃料电池仅需通风就可以被动的补充阴极气体;第五,在缺乏电力基础设施的局部地区,微生物燃料电池具有广泛应用的潜力,同时也扩大了用来满足我们对能源需求的燃料的多样性。