松下公司通过大力投入车载电池事业等,确定了其领先行业的竞争力。它最新开发出一种AI高科技材料分析手法,不仅仅适用于电池,而且预计可以利用于太阳能电池等的材料开发。
本次所开发的方法是一种可以高速且高分辨率条件下,可视化锂离子电池内部材料在电池工作过程中的行动状态,这一状态的可视化,将会极大地影响Li离子电池的容量密度,充放电速度以及寿命等多种性能的改善(图1)。例如,可以通过空间、时间维度在高度分解状态下显示电极中参与充放电的部分与不相关的部分。研究人员使用这种方法,可以立即识别应用新材料后的效果,由AI(人工智能)进行材料开发时,可以反馈更多精准的数据给到数据库。松下预计通过这样的AI开发材料手法,“材料情报”的竞争力将会得到很大的提升。(松下创新推进部门技术创新本部先锋研发中心的先进分析系统课,课长井垣恵美子女士表示)
通过电子显微镜进行解析
所开发的方法使用了电子显微镜。通过释放电子,扫描并照射到被检测的对象物质上,通过EELS(电子能量损耗能谱法)定量分析,将与原子产生碰撞导致减少的电子能量分布进行2维成像。传统做法中,为了获得Li离子分布图像,一般需要使用大型的辐射装置(例如“SPring-8”)照射X射线。而且,通过X射线成像将分辨率提高到原子水平是非常困难的。因此,为了确认新材料在锂离子电池开发中的影响,通常依靠制作样品并测量电池容量和厚度变化等的间接观察手法进行。
虽然说用电子显微镜可以将分辨率提高到纳米级,并且可以在原子级水平下进行观察,但是EELS的应用其实是非常困难的。“由于Li原子(电子数量为3)可以与电子显微镜所发出电子进行碰撞的电子数量很少,碰撞概率会变低“(开发了上述手法的松下前述部门首席研究员野村優貴先生表示)。测量系统的噪声水平使得无法获取足够的信号。如果在没有进行其他特殊处理的情况下希望获得清晰的Li离子分布图像,就需要长时间照射高强度电子束。
使用AI快速成像
松下通过将EELS和AI机器学习相结合,实现可在短时间内拍摄。目前松下没有明确公布其实现方法的细节,但可以了解到的是这种手法通过机器学习,在几十秒的短时间内获得需要几十分钟的长时间观察才能得到的观察数据。而且其他测量条件也可以被包含在学习对象中。似乎是通过一系列独创性算法,从短时间内的不完全数据中,排除噪声并提取了有用信号。
电极和电解质中Li离子浓度的空间分辨率为nm级,与使用X射线的常规方法(图3)相比,新手法的水平提高了约100倍。成像时间为每张20秒。在2017年11月举行的“第58届电池讨论会”(讲座编号“1C26”)上,松下大概用15分钟时间发表了部分方法。宣布会后,主要通过应用AI,进一步缩短了成像时间。预计未来将进一步加速成像。
预先应用于固态电池研发中
目前,松下已经将这种方法预先应用于全固态电池的研发中,在特定的课题上进行确认。全固态电池是松下与丰田汽车合作研究开发中最重要的下一代技术。与电解质接触的电极表面附近的变化是量产应用中的主要课题。松下通过锂离子浓度分布分析正极的变化。
此时,松下这次还利用另一种分析方法,关注正极和电解质界面附近的物质形成过程以及离子导电性,确认将推动上述课题的解决。而且有可能将阐明与使用液态电解质的锂离子电池不同的固态锂离子电池的Li离子传导特性。目前锂离子电池常见的正极材料使用LiCo2O3,电解质采用常用于小容量电池的氧化物陶瓷材料LASGTP。由于副反应在界面处形成Co3O4物质。