动力电池自放电测试的检测方法

2018-11-24      3665 次浏览

1、自放电检测方法

1)电压降法

用储存过程中电压降低的速率来表征自放电的大小。该方法操作简单,缺点是电压降并不能直观地反映容量的损失。电压降法最简单实用,是当前生产普遍采用的方法。

2)容量衰减法

即单位时间内容量降低的百分数来表示。

3)自放电电流法Isd

根据容量损失和时间的关系推算电池储存过程中的自放电电流Isd。

4)副反应消耗的Li+摩尔数计算法

基于电池储存过程Li+消耗速率受负极SEI膜电子电导的影响,推导算Li+消耗量随储存时间的关系。

2、自放电测量系统关键点

1)选取合适的SOC

dOCV/dT受SOC影响,温度对OCV的影响在平台处被显著放大,带来很大的SOC预测误差。需选择对温度变化相对不敏感的SOC测试自放电,如:FC1865:25%SOC测自放电;LC1865:50%SOC测自放电。

因电池容量差异,故实际电池的SOC存在波动,公差约为4%左右,故考察5%的公差范围内OCV曲线斜率的变化。LC186553%和99.9%SOC处斜率很稳定,分别为3.8mV/%SOC和10mV/%SOC。FC1865~25%SOC处斜率比较稳定;当然满电态也是个简单实用的自放电测量点。

(本文资料来源于网络,如有侵权请联系删除!)

2)起始时间的选定

FC186525%SOC下(也可以是其他SOC值)看充电结束后每小时电压变化,20h以后电压降速率基本一致,可以认为极化已基本恢复。故选取24h作为自放电测试起始时间。

LC186550%SOC下14h以后电压变化速率在0.01mV/h上下小范围波动,可以认为极化已基本恢复,选取24h作为自放电起始点是可行的。

3)储存温度和时间

储存温度和时间对自放电的影响(LC1865H)

在研究区间内,自放电与时间和温度均呈显著的线性关系。可将自放电模型拟合为:自放电=0.23*t+0.39*(T-25)。(以上数值和关系式和电池体系有关,常量会相应变化,以下其他关系也是。)

常温下由于化学反应速率的降低,其物理自放电的异常点表现更明显。14D储存能够非常好的预测28D的结果。

3、自放电测量系统的改进

1)测电压温度

测电压环境温度对自放电的影响:FC1865:每增加1℃,电压下降0.05mV;LC1865:每增加1℃,电压下降0.17mV。

2)电压表选型

在电压表的选择上,由于自放电研究的是0.1mV层面的变化,传统的4位半电压表(精确到1mV,分辨率到0.1mV)已不适合,故选用六位半Agilent34401A电压表,(精确达到0.1mV,分辨率达到0.01mV甚至更高)。另外该量仪的重复性也相当不错。

4、自放电标准的确定

1)理论推算

2)1mV差异模拟

通过人为调整10%SOC差异模拟1mV(28天1mv,14天0.5mv的差异)自放电差异使用3年后的Balance结果。3组电池均未发生过充的安全问题,但是放电时的电压差已经非常大(1200mV),自放电大的电池被过放至2.5V,PACK容量损失10%。

相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号