锂离子电池正极材料的性能分析

2018-09-30      3667 次浏览

(1)产业对锂离子电池的性能要求

要理解正极材料的技术指标,需要首先从电池的技术指标说起。锂离子电池产业初期,主要服务于移动电子产品的发展,例如笔记本电脑、平板电脑、移动智能终端(手机)等。近年来,新能源产业和电动车产业迅速崛起,对锂离子电池的需求急速增长,刺激锂电产业加快了发展速度。因此,锂离子电池需满足诸多技术性能指标,才能被产业认可、得到进一步的发展。这些技术指标中,最基本的有比能量、循环稳定性、比功率、成本、安全性可靠性、耐用性能、生产制造效率、可持续性等等,指标之间相互关联,不同的应用领域对锂离子电池指标的优先考虑顺序是不同的。与便携式电子产品中的锂离子电池相比,储能与电动车产业中应用的锂离子电池的最大不同是单体电池的容量增长为十倍甚至几十倍,同时电池模组的功能、结构及应用的复杂程度显著提高,这对锂离子电池的一致性、可靠性提出了更高的要求。

基于20多年的研究和工程实践经验,认为锂离子电池的技术指标中最重要的是比能量和循环性能,其次是比功率、安全性、可靠性、成本和一致性等性能指标。比能量越高,单位能量(Wh)的材料成本就下降;循环寿命越长,电池的实际使用成本就低。目前移动智能终端用锂离子电池需要满足比能量700Wh/L以上、循环性能200次以上的要求,而电动车用锂离子电池需要满足比能量140Wh/kg(磷酸铁锂或者锰酸锂正极材料)或200Wh/kg(层状氧化物正极材料)以上、循环性能1500次以上的要求。锂离子电池正极材料需满足上述电池指标才可能被电池主流市场所接受。而目前锂离子电池的比能量和循环性能主要取决于正极材料,因而锂离子电池正极材料的主要研发目标就是高比能量、长循环寿命。

对于笔记本电脑、平板电脑、移动智能终端用锂离子电池,体积比能量是最重要的指标,当然体积比能量高的电池,通常质量比能量也会高。因为客户希望在特定体积的设备(例如手机)中放进更多的电池能量,目前石墨|钴酸锂体系的锂离子电池产业化最成熟、同时高体积比能量也最高,其它材料体系的锂离子电池很难撼动该体系锂离子电池在移动电子产品行业的主导地位。安全性、可靠性和一定的循环性能对该类电池也很重要,由于主要以单体方式应用,电池的一致性和成本就不那么重要了。

对于电动车用锂离子电池,尽管其对体积比能量的要求不像便携式电子产品电池那样苛刻,但毕竟乘用车的空间有限,车体重量会影响电动车的行驶里程,因此电池的质量比能量和体积比能量仍然是非常重要的。除此之外,车用锂离子电池几乎对其他所有性能的要求都近乎苛刻,远远高于便携式电子产品电池的性能要求。其与便携式电子产品电池最大的区别有三个。一是电动车电源需要较高的电压和电流,需要大量单体电池进行串并联组合,这使得电池组实际可以利用的比能量不仅取决于单体电池的比能量,还取决于单体电池的一致性、特别是动态一致性,动力电池的一致性近年来逐渐得到人们的关注。二是单体电池的规模显著增大,这使得单体电池的价格较高,热失控造成的危害较为严重,因此市场对电池的安全性和可靠性较为敏感。三是由于电动车需要10-15年的使用寿命,因此对循环性能的要求很高,一般需要1500次以上。此外,由于电动车需要启动和加速,因此动力电池对比功率也有一定的要求。

随着电动汽车产业的迅速发展,动力锂离子电池未来将与便携式电子产品电池一并成为锂电产业的主流产品。比能量和循环性能是锂离子电池技术发展中永远追求的最重要的性能指标,随着安全性、可靠性、比功率和一致性等日益受到关注,该方面的技术有望获得快速发展。需要说明的是,随着锂离子电池逐渐渗入到国民经济的各个领域,会有越来越多的非主流的锂离子电池细分市场,其对电池的性能指标要求比较特殊,不在本文的讨论范围。

(2)满足主流锂离子电池产业需求的正极材料

当前,满足锂离子电池主流市场对电池性能要求的正极材料主要有层状钴酸锂LiCoO2材料(LCO)、尖晶石锰酸锂LiMn2O4材料(LMO)、橄榄石磷酸铁锂LiFePO4材料(LFP)、橄榄石磷酸锰铁锂LiMn0.8Fe0.2PO4材料(LMFP)、层状三元材料LiNi1/3Mn1/3Co1/3O2材料(NMC333)、层状三元材料LiNi0.4Mn0.4Co0.2O2(NMC442)、LiNi0.5Mn0.3Co0.2O2(NMC532)、LiNi0.6Mn0.2Co0.2O2(NMC622)、LiNi0.7Mn0.2Co0.1O2(NMC721)、LiNi0.8Mn0.1Co0.1O2(NMC811)和层状高镍材料LiNi0.8Co0.15Al0.05O2(NCA)等。从产业应用的角度,上述各材料因具有不同的物理化学特点,适合于不同应用领域的锂离子电池,因而材料产品的关键性能指标也有所差异。

钴酸锂LiCoO2(LCO)材料是目前压实密度最高的正极材料,因此所制备的锂离子电池体积比能量最高,成为平板电脑和移动智能终端用锂离子电池的主要正极材料。其缺点主要是钴资源有限、成本高,限制了其在电动车领域的广泛应用。该材料的结构与反应特性是随着充电电压的逐渐升高,锂脱出量逐渐增加,LCO的可利用容量逐渐提高,但当锂脱出量超过55%时(即相对于金属锂的充电电位为4.25V、相对于石墨|LCO全电池的充电电压为4.2V),材料的结构稳定性迅速下降,寿命及安全性迅速变差。因此耐受较高充电电压、同时化学稳定性满足电池应用需求的LCO正极材料是当前材料制备技术的主要发展方向。LCO结构稳定、合成较为容易,其制备技术简单,也相对最为成熟。在2000年之前,LCO主要通过氧化钴/碳酸锂混合物的固相烧结技术进行生产,随着人们对于产品堆积密度、比表改性等的极致追求,控制结晶制备钴酸锂前驱体的方法因具有材料形貌控制的优势而逐渐成为主要的产业制备技术。

尖晶石锰酸锂LiMn2O4(LMO)材料的主要优点是原料资源丰富、成本低、电池安全性好;其公认的主要缺点是电池比能量低,同时循环稳定性欠佳。上世纪90年代开始,受其原料及工艺成本低、安全性好的吸引,人们探索了LMO在电动大巴、乘用轿车、特种车辆、电动工具等领域的应用。传统的固相烧结制备技术无法实现对材料结构的调控,为了改善其循环稳定性及材料的振实密度,2004年作者团队引入液相工艺制备前驱体,并进一步通过表面包覆、晶格掺杂、表面梯度化等技术提升材料性能。但受限于材料溶解性高的特点,电池的循环稳定性一直未能很好得到满足,只有进一步配合电解液,电池的寿命才能满足需求。目前,LMO虽然已经很少用于车用动力电池,但在对成本较为敏感的电动自行车等小型动力电池行业得到了广泛的应用。此外,随着人们对车用大型动力电池安全性的关注,与三元材料共混使用也成为LMO材料的主要用途之一。

橄榄石磷酸铁锂LiFePO4(LFP)材料的主要优点是原料资源丰富、成本低、电池安全性和循环性能好,其主要缺点是电池比能量低。该材料不仅在电动自行车、电动大巴、电动公交车、特种车行业得到了广泛应用,而且在大规模储能行业得到了广泛的应用。由于该材料中锂离子沿一维通道传输,因此材料具有显著的各向异性、对缺陷结构异常敏感,需要制备过程保障合成反应的高度均匀性和精确的Fe:P比例,才可能获得较好的容量和倍率性能。基于材料结构和合成反应的复杂性,该材料的制备主要有两个难题:一是过程需要还原气氛,反应原料因种类、粒度不同而对还原气氛具有不同的要求,局部还原性过高或者过低都会导致产品中存留杂质;二是材料需要进行表面碳包覆或者与其他类型的导电剂进行复合,这使得材料的杂质和压实密度很难控制。2005年作者所在课题组提出利用控制结晶技术制备高性能磷酸铁前驱体(FP),再与锂源和碳源一起通过碳热还原制备LFP。上述工艺路线经过进一步的改进成为了目前主流的磷酸铁锂材料制备技术。为了满足人们对LFP电池性能的不断追求,高均匀性、高批次稳定性成为LFP正极材料最受关注的产品指标,而传统的固相烧结技术一方面在原理上就难以实现高效的一致性控制,另一方面一致性控制会导致工艺成本的显著提高。与固相工艺相比,基于液相工艺制备的前驱体或者基于水热/溶剂热制备的正极材料,具有较好的结构可调性和可控性,同时批次稳定性及反应均匀性好。类似于大化工装置,连续溶剂热工艺容易实现超大规模生产。因此液相技术逐渐成为下一代高品质LFP正极材料制备技术的发展趋势。

橄榄石磷酸锰铁锂LiMn0.8Fe0.2PO4(LMFP)材料是LFP材料的升级版,比能量比LFP高10%;由于Mn和Fe原料的反应动力学和对还原气氛的要求存在差异,该材料的主要缺点是制备困难。目前基于固相法的产业制备工艺还不成熟,尚未得到大规模应用。如果LFP的液相制备技术获得产业应用,则该类材料的制备难题有望迎刃而解。

三元材料的发展历程是从本世纪初开始的。上世纪90年代后期,随着LCO的大规模应用,受钴资源的限制,人们希望用资源更为丰富的镍来取代钴。与LCO相比,LiNiO2材料(LNO)因资源丰富价格便宜,且具有更高的容量,曾被认为最有希望的锂离子电池材料。但LNO作为正极材料,也存在制备困难、材料结构不稳定、电池循环性能差等较难解决的问题。为了解决LNO的结构稳定性和热稳定性的问题,人们将钴和锰掺杂进LNO的体相,最早的镍钴锰三元材料NCM应运而生。为了提升材料的振实密度,2005年作者所在课题组提出利用控制结晶技术制备高密度球形氢氧化镍钴锰前驱体,再与锂源一起混合烧结制备NCM333。并在此基础上进一步通过表面包覆、晶格掺杂、表面梯度化等技术提升材料性能。

层状三元材料LiNi1/3Mn1/3Co1/3O2(NMC333)在所有由Ni、Co、Mn过渡金属元素组成的层状氧化物正极材料中综合性能最好,是目前乘用车动力电池的主要正极材料。NMC333在充电到4.5V时比容量也很高。其主要缺点是钴含量高,存在资源和成本的问题。为了降低成本、提高容量,在NMC333的基础上,人们不断把镍含量提高,研发出了一系列不同镍含量的层状三元材料。NMC442是由NMC333向NMC532和NMC622发展的过渡性产品,由于其综合性能不如NMC333、NMC532和NMC622,生产及应用的规模比较有限。NMC532是当前应用较为广泛的三元材料之一。由于三元过渡金属中镍比例低于等于50%时,材料的烧结气氛是空气,生产成本相对较低;而镍比例高于等于60%时,烧结气氛需要氧气或者氧气/空气混合气体,生产成本相对较高。因此在空气气氛烧结的三元系列正极材料中,NMC532是镍含量最高的,容量也最高,性价比好,目前有一定的市场份额。NMC622是一款综合性能很好的正极材料,缺点是制备较难。随着其制备工艺的日趋成熟,NMC622在乘用车动力电池中的应用比例稳步上升,也是当前应用较为广泛的三元材料之一。NMC721的综合性能不如NMC811和NMC622,是三元材料由NMC622向NMC811发展过程中的过渡产品,没有得到很大的发展。NMC811和NCA,这两种材料的主要优点是比容量高,同时镍资源比钴丰富、成本比钴低,原料资源受限的问题相对较小。缺点是材料制备难度大,对水份非常敏感,电池制备的条件和技术门槛高。NCA目前已经开始规模应用在电动车产业中,而NMC811则被公认为是比能量超过300Wh/kg锂离子电池的主要选择之一。

上述材料的各项性能指标均能够满足车用锂离子电池对正极材料的性能要求和电池制造技术工艺对材料加工性能的基础要求,是目前已经或者有望得到产业应用的主要的锂离子电池正极材料。

相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号