锂电池浆料性质及关键影响因素分析

2022-08-24      7391 次浏览

锂电池电极浆料是电池的开头,也是最重要的环节。电极浆料涉及的内容很多,包括材料学、颗粒学、流体力学、物理学等多学科的内容。浆料质量的好坏,虽然只用粘度、固含量、粒度等参数表示,但是其影响因素却众多,这也是我迟迟不敢总结的原因。其实,透过现象看本质,了解影响浆料性质的核心,必然能对症下药,解决不良浆料的难题。


锂电池的生产制造,是由一个个工艺步骤严密联络起来的过程。整体来说,锂电池的生产包括极片制造工艺、电池组装工艺以及最后的注液、预充、化成、老化工艺。在这三个阶段的工艺中,每道工序又可分为数道关键工艺,每一步都会对电池最后的性能形成很大的影响。


在极片制造工艺阶段,可细分为浆料制备、浆料涂覆、极片辊压、极片分切、极片干燥五道工艺。在电池组装工艺,又根据电池规格型号的不同,大致分为卷绕、入壳、焊接等工艺。在最后的注液阶段又包括注液、排气、封口、预充、化成、老化等各个工艺。极片制造工序是整个锂电池制造的核心内容,关系着电池电化学性能的好坏,而其中浆料的优劣又显得尤为重要。


一、浆料基本理论


锂电池电极浆料是流体的一种,通常流体可以分为牛顿流体和非牛顿流体。其中,非牛顿流体又可分为胀塑性流体、依时性非牛顿流体、假塑性流体和宾汉塑性流体等几种。牛顿流体是指在受力后极易变形,且切应力和变形速率成正比的低粘性流体。任一点上的剪应力都同剪切变形速率呈线性函数关系的流体。自然界中许多流体是牛顿流体。水、酒精等大多数纯液体、轻质油、低分子化合物溶液以及低速流动的气体等均为牛顿流体。


非牛顿流体,是指不满足牛顿黏性实验定律的流体,即其剪应力和剪切应变率之间不是线性关系的流体。非牛顿流体广泛存在于生活、生产和大自然之中。高分子聚合物的浓溶液和悬浮液等一般为非牛顿流体。绝大多数生物流体都属于现在所含义的非牛顿流体。人身上血液、淋巴液、囊液等多种体液,以及像细胞质那样的"半流体"都属于非牛顿流体。


电极浆料是一种是由多种不同比重、不同粒度的原料组成,又是固-液相混合分散,形成的浆料属于非牛顿流体。锂电池浆料又可分为正极浆料和负极浆料两种,由于浆料体系(油性、水性)不同,其性质必千差万别。但是,判断浆料的性质无非以下几个参数:


1.浆料的粘度


粘度是流体粘滞性的一种量度,是流体流动力对其内部摩擦现象的一种表示。液体在流动时,在其分子间出现内摩擦的性质,称为液体的黏性,粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子。粘度又分为动力黏度和条件粘度。


粘度的含义为一对平行板,面积为A,相距dr,板间充以某液体。今对上板施加一推力F,使其出现一速度变化du。由于液体的粘性将此力层层传递,各层液体也相应运动,形成一速度梯度du/dr,称剪切速率,以r′表示。F/A称为剪切应力,以τ表示。剪切速率和剪切应力间具有如下关系:


(F/A)=η(du/dr)


牛顿流体符合牛顿公式,粘度只和温度有关,和切变速率无关,τ和D为正比关系。


非牛顿流体不符合牛顿公式τ/D=f(D),以ηa表示一定(τ/D)下的粘度,称表观粘度。非牛顿液体的粘度除了和温度有关外,还和剪切速率、时间有关,并有剪切变稀或剪切变稠的变化。


2.浆料性质


浆料是一种非牛顿流体,是固液混合流体,为了满足后续涂布工艺的要求,浆料要具有以下三个特性:


①好的流动性。流动性可以通过搅动浆料,让其自然流下,观察其持续性。持续性好,不断断续续则说明流动性好。流动性和浆料的固含量和粘度有关,


②流平性。浆料的流平性影响的是涂布的平整度和均匀度。


③流变性。流变性是指浆料在流动中的形变特点,其性质好坏影响着极片质量的优劣。


3.浆料分散基础


锂电池的电极制造,正极浆料由粘合剂、导电剂、正极材料等组成;负极浆料则由粘合剂、石墨碳粉等组成。正、负极浆料的制备都包括了液体和液体、液体和固体物料之间的相互混合、溶解、分散等一系列工艺过程,而且在这个过程中都伴随着温度、粘度、环境等变化。锂电池浆料的混合分散过程可以分为宏观混合过程和微观分散过程,这两个过程始终都会伴随着锂电池浆料制备的整个过程。浆料的制备一般会经过以下几个阶段:


①干粉混合。颗粒之间以点点、点面、点线形式接触,


②半干泥状捏合阶段。此阶段在干粉混合均匀之后,加入粘结剂液体或溶剂,原材料被润湿、呈泥状。经过搅拌机的强力搅拌,物料受到机械力的剪切和摩擦,同时颗粒之间也会有内摩擦,在各个用途力下,原料颗粒之间趋于高度分散。此阶段有关成品浆料的粒度和粘度有至关重要的影响。


③稀释分散阶段。捏合完成之后,缓慢加入溶剂调节浆料粘度和固含量。此阶段分散和团聚共存,并最后达到稳定。在这个阶段物料的分散重要受机械力、粉液间摩擦阻力、高速分散剪切力、浆料和容器壁撞击相互用途力的影响。


二、影响浆料性质的参数分析


合浆后的浆料要具有较好的稳定性,这是电池生产过程中保证电池一致性的一个重要指标。随着合浆结束,搅拌停止,浆料会出现沉降、絮凝聚并等现象,出现大颗粒,这会对后续的涂布等工序造成较大的影响。表征浆料稳定性的重要参数有流动性、粘度、固含量、密度等。


1.浆料的粘度


电极浆料要具有稳定且恰当的粘度,其对极片涂布工序具有至关重要的影响。粘度过高或过低都是不利于极片涂布的,粘度高的浆料不容易沉淀且分散性会好一点,但是过高的粘度不利于流平效果,不利于涂布;粘度过低也是不好的,粘度低时虽然浆料流动性好,但干燥困难,降低了涂布的干燥效率,还会发生涂层龟裂、浆料颗粒团聚、面密度一致性不好等问题。


在我们生产过程中经常出现的问题是粘度出现变化,而这里的"变化"又可分为:瞬时变化和静止变化。瞬时变化是指在粘度测试过程中间就出现了剧烈的变化,静止变化是指浆料静止放置一段时间后粘度出现变化。粘度的变化或高或低,或时高时低。通常来说,影响浆料粘度的因素重要有搅拌浆料的转速、时间控制、配料顺序、环境温湿度等。因素很多,当我们遇见粘度变化时应该怎么样分析解决呢?浆料的粘度本质上,是由粘结剂决定性影响的。假想,没有粘结剂PVDF/CMC/SBR(如图2、3),或者粘结剂没有很好的将活物质组合起来,固体活物质会和导电剂构成具有均匀涂覆的非牛顿流体吗?不会!所以,分析解决浆料粘度变化的原因,要从粘结剂的本质及浆料分散程度上着手。


图2.PVDF分子排列结构


图3.CMC分子结构式


(1)粘度升高


不同的浆料体系具有不同的粘度变化规律,目前主流的浆料体系是正极浆料PVDF/NMP油性体系,负极浆料是石墨/CMC/SBR水性体系。


①正极浆料在放置一段时间后粘度升高。其原因一(短时间放置)是浆料搅拌速度过快,粘结剂未充分溶解,放置一段时间后PVDF粉末充分溶解,粘度升高。通常来说,PVDF要至少3个小时才能充分溶解,无论多快的搅拌速度都无法改变这一影响因素,所谓"欲速则不达"。原因之二(长时间放置)是浆料静置过程中,胶体由溶胶状态变为凝胶状态,此时假如对其进行慢速匀浆,其粘度可以恢复。原因之三是胶体和活物质、导电剂颗粒之间形成了一种特殊的结构,此状态是不可逆的,浆料粘度升高后无法恢复。


②负极浆料粘度升高。负极浆料粘度升高重要是由粘结剂分子结构被破坏引起的,分子链断裂后被氧化后浆料粘度升高。假如物料被过度分散,颗粒粒径出现较大的降低,也会新增浆料的粘度。


(2)粘度降低


①正极浆料粘度降低。原因之一,粘结剂胶体发生了性状的变化。变化的原因多种多样,如浆料传输过程中受到强剪切力、粘结剂吸收水分发生质变、搅拌过程中导致结构发生变化、自身发生降解等。原因之二,搅拌分散不均匀导致浆料中固体物质大面积沉降。原因之三,搅拌过程中粘结剂受到设备和活物质的强剪切力和摩擦力,在高温情况下发生性状变化,造成粘度下降。


②负极浆料粘度降低。原因之一CMC中混有杂质,CMC中的杂质大多是难溶性高分子树脂,当CMC和钙、镁等混溶时,会降低其粘度。原因之二CMC是羟甲基纤维素钠,其重要是C/O的结合,键强很弱极易被剪切力破坏,当搅拌速度过快或时间太长时有可能破坏CMC的结构。CMC在负极浆料中起到增稠和稳定的用途,同时对原材料的分散起重要的用途,其结构一旦发生破坏,必然引起浆料沉降,粘度降低。原因之三是SBR粘结剂的破坏。在实际生产中通常选择CMC和SBR协同工作,此二者的用途各不相同。SBR重要起到粘结剂的用途,但是其在长时间搅拌下极易发生破乳,导致粘结性失效,浆料粘度降低。


(3)特殊情况(果冻状及时高时低)


在正极浆料制备过程中有时候会出现浆料变成"果冻"的情况。这种情况的原因重要有二:其一,水分。考虑活物质吸潮、搅拌过程水分控制不好,原材料吸收水分后或者搅拌环境湿度较高,导致PVDF吸收水分变成果冻状。其二,浆料或材料的pH值。pH值越高,对水分的控制就要求更严格,尤其是NCA、NCM811等高镍材料的搅拌。


浆料粘度忽高忽低,原因之一可能是浆料测试过程中未完全稳定下来,浆料粘度受温度的影响很大。尤其是被高速分散之后,浆料内部温度存在一定的温度梯度,取样不同粘度也不尽相同。原因之二是浆料的分散性差,活物质、粘结剂、导电剂没有良好的分散开,浆料就没有好的流动性,自然浆料粘度忽高忽低。


2.浆料的粒度


在合浆之后,要对其粒度进行测量,粒度测量的方法通常采用刮板法。粒度是表征浆料质量的一个重要参数,粒度大小有关涂布工序、辊压工序以及电池性能有重要影响,理论上来说浆料粒度越小越好。当颗粒粒径过大时,浆料的稳定性会受到影响,出现沉降、浆料一致性不良等。在挤压式涂布过程中会出现堵料、极片干燥后麻点等情况,造成极片质量问题。在后续的辊压工序中,涂布不良处由于受力不均,极易造成极片断裂、局部微裂纹,这对电池的循环性能、倍率性能和安全性能造成了极大的危害。


正负极活物质、粘接剂、导电剂等主材料粒径大小不一,密度不同,在搅拌过程中会出现混合、挤压、摩擦、团聚等多种不同的接触方式。在原材料被逐渐混匀、被溶剂润湿、大块物料破裂和逐渐趋于稳定这几个阶段中,会出现物料混合不匀、粘接剂溶解不良、细颗粒严重团聚、粘接剂性状发生变化等情况,就会导致大颗粒的出现。


当我们弄明白颗粒出现的原因时就要对症下药,解决这些问题。有关物料干粉混合,个人觉得搅拌机速度对干粉混合程度影响不大,但是两者要足够的时间来保证干粉的混匀。现在有的厂商选择粉状粘接剂有的选择液体溶解好的粘接剂,两种不同的粘接剂决定了工艺的不同,采用粉状粘结剂要更长的时间来进行溶解,否则在后期会出现溶胀、回弹、粘度变化等。细颗粒之间的团聚不可防止,但是我们要保证物料之间有足够大的摩擦力,能够促使团聚颗粒出现挤压、破碎,利于混合。这就要我们控制好浆料不同阶段的固含量,太低的固含量会影响颗粒之间的摩擦分散。


3.浆料的固含量


浆料的固含量和浆料稳定性息息相关,同种工艺和配方,浆料固含量越高,粘度越大,反之亦然。在一定范围内,粘度越高,浆料稳定性越高。我们设计电池时,一般从电池容量反推卷芯厚度再到极片的设计,那么极片设计仅仅和面密度、活物质密度、厚度等参数有关。极片的参数是通过涂布机和辊压机对其进行调整的结果,浆料的固含量对其并无直接影响。那么,浆料固含量的高低是不是就无关紧要呢?


(1)固含量有关提高搅拌效率和涂布效率具有一定影响。固含量越高,浆料搅拌时间越短,所耗溶剂越少,涂布干燥效率越高,节省时间。


(2)固含量对设备有一定的要求。高固含量浆料对设备的损耗较高,因为固含量越高,设备磨损越严重。


(3)高固含量的浆料稳定性更高,部分浆料稳定性测试结果表明(如下图),常规搅拌的TSI(不稳定性指数)1.05要高于高粘度搅拌工艺TSI值0.75,所以高粘度搅拌工艺所获得的浆料稳定性要优于常规搅拌工艺。但是高固含量的浆料也会影响其流动性,非常挑战涂布工序的设备和技术人员。


(4)高固含量的浆料可以减少涂层间厚度,降低电池内阻。


4.浆料密度


浆料的密度是反应浆料一致性的重要参数,通过测试不同位置的浆料密度可以验证浆料的分散效果。在这就不多赘述,通过以上的总结,相信大家制备出良好的电极浆料。

相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号