剖析影响晶硅太阳能电池转换效率因素

2018-08-02      6127 次浏览

晶硅太阳能电池的转换效率损失机理

太阳能电池转换效率受到光吸收、载流子输运、载流子收集的限制。对于单晶硅硅太阳能电池,由于上光子带隙的多余能量透射给下带隙的光子,其转换效率的理论最高值是28%。只有尽量减少损失才能开发出效率足够高的太阳能电池。

影响晶体硅太阳能电池转换效率的原因主要来自两个方面:

(1)光学损失,包括电池前表面反射损失、接触栅线的阴影损失以及长波段的非吸收损失。

(2)电学损失,它包括半导体表面及体内的光生载流子复合、半导体和金属栅线的接触电阻,以及金属和半导体的接触电阻等的损失。这其中最关键的是降低光生载流子的复合,它直接影响太阳能电池的开路电压。光生载流子的复合主要是由于高浓度的扩散层在前表面引入大量的复合中心。此外,当少数载流子的扩散长度与硅片的厚度相当或超过硅片厚度时,背表面的复合速度对太阳能电池特性的影响也很明显。

提高晶硅太阳能电池转换效率的方法

(1)光陷阱结构。一般高效单晶硅电池采用化学腐蚀制绒技术,制得绒面的反射率可达到10%以下。目前较为先进的制绒技术是反应等离子蚀刻技术(RIE),该技术的优点是和晶硅的晶向无关,适用于较薄的硅片,通常使用SF6/O2混合气体,在蚀刻过程中,F自由基对硅进行化学蚀刻形成可挥发的SiF4,O自由基形成SixOyFz对侧墙进行钝化处理,形成绒面结构。目前韩国周星公司应用该技术的设备可制得绒面反射率低于在2%~20%范围。

(2)减反射膜。它的基本原理是位于介质和电池表面具有一定折射率的膜,可以使入射光产生的各级反射相互间进行干涉从而完全抵消。单晶硅电池一般可以采用TiO2、SiO2、SnO2、ZnS、MgF2单层或双层减反射膜。在制好绒面的电池表面上蒸镀减反射膜后可以使反射率降至2%左右。

(3)钝化层:钝化工艺可以有效地减弱光生载流子在某些区域的复合。一般高效太阳电池可采用热氧钝化、原子氢钝化,或利用磷、硼、铝表面扩散进行钝化。热氧钝化是在电池的正面和背面形成氧化硅膜,可以有效地阻止载流子在表面处的复合。原子氢钝化是因为硅的表面有大量的悬挂键,这些悬挂键是载流子的有效复合中心,而原子氢可以中和悬挂键,所以减弱了复合。

(4)增加背场:如在P型材料的电池中,背面增加一层P+浓掺杂层,形成P+/P的结构,在P+/P的界面就产生了一个由P区指向P+的内建电场。由于内建电场所分离出的光生载流子的积累,形成一个以P+端为正,P端为负的光生电压,这个光生电压与电池结构本身的PN结两端的光生电压极性相同,从而提高了开路电压Voc。同时由于背电场的存在,使光生载流子受到加速,这也可以看作是增加了载流子的有效扩散长度,因而增加了这部分少子的收集几率,短路电流Jsc也就得到提高。

(5)改善衬底材料:选用优质硅材料,如N型硅具有载流子寿命长、制结后硼氧反应小、电导率好、饱和电流低等。

相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号