钴酸锂(LiCoO2)
其高比能量使钴酸锂成为手机,笔记本电脑和数码相机的热门选择。电池由氧化钴阴极和石墨碳阳极组成。阴极具有分层结构,在放电期间,锂离子从阳极移动到阴极,充电过程则流动方向相反。结构形式如图1所示。
图1:钴酸锂结构
阴极具有分层结构。在放电期间,锂离子从阳极移动到阴极;充电时流量从阴极流向阳极。
钴酸锂的缺点是寿命相对较短,热稳定性低和负载能力有限(比功率)。像其他钴混合锂离子电池一样,钴酸锂采用石墨阳极,其循环寿命主要受到固体电解质界面(SEI)的限制,主要表现在SEI膜的逐渐增厚,和快速充电或者低温充电过程的阳极镀锂问题。较新的材料体系增加了镍,锰和/或铝以提高寿命,负载能力和降低成本。
钴酸锂不应以高于容量的电流进行充电和放电。这意味着具有2,400mAh的18650电池只能以小于等于2,400mA充电和放电。强制快速充电或施加高于2400mA的负载会导致过热和超负荷的应力。为获得最佳快速充电,制造商建议充电倍率为0.8C或约2,000mA。电池保护电路将能量单元的充电和放电速率限制在约1C的安全水平。
六角蜘蛛图(图2)总结了与运行相关的具体能量或容量方面的钴酸锂性能;具体功率或提供大电流的能力;安全;在高低温环境下的性能表现;寿命包括日历寿命和循环寿命;成本特性。蜘蛛图中没有显示的其他重要特征还包括毒性,快速充电能力,自放电和保质期。
由于钴的高成本以及通过与其他活性阴极材料混合材料带来的明显性能改善,钴酸锂正在逐步被锰酸锂替代,尤其是NMC和NCA。(请参阅下面对NMC和NCA的描述。)
图2:平均钴酸锂电池的蜘蛛图。
钴酸锂在高比能量方面表现出色,但在功率特性、安全性和循环寿命方面只能提供一般的性能表现
锰酸锂(LiMn2O4)
尖晶石锰酸锂电池首次发表于1983年的材料研究报告中。1996年,Moli能源公司将锰酸锂为阴极材料的锂离子电池商业化。该架构形成三维尖晶石结构,可改善电极上的离子流动,从而降低内部电阻并改善电流承载能力。尖晶石的另一个优点是热稳定性高,安全性提高,但循环和日历寿命有限。
低电池内阻可实现快速充电和大电流放电。18650型电芯,锰酸锂电池可以在20-30A的电流下放电,并具有适度的热量积累。也可以施加高达50A1秒负载脉冲。在此电流下持续的高负荷会导致热量积聚,电池温度不能超过80°C(176°F)。锰酸锂用于电动工具,医疗器械,以及混合动力和纯电动汽车。
图4说明在锰酸锂电池的阴极上形成三维晶体骨架。该尖晶石结构通常由连接成晶格的菱形形状组成,一般在电池化成后出现。
图4:锰酸锂结构。
锰酸锂阴极结晶形成具有在化成后成型的三维骨架结构。尖晶石提供低电阻,但比能量低于钴酸锂。
锰酸锂的容量大约比钴酸锂低三分之一。设计灵活性使工程师能够选择最大限度地延长电池的使用寿命,或者提高最大负载电流(比功率)或容量(比能)。例如,18650电池的长寿命版本只有1,100mAh的适中容量;高容量版本则达到1,500mAh。
图5显示了典型锰酸锂电池的蜘蛛图。这些特性参数似乎不太理想,但新设计在功率,安全性和寿命方面有所改进。纯锰酸锂电池今天不再普遍;它们只在特殊情况下应用。
图5:纯锰酸锂电池的蜘蛛图。
尽管整体性能一般,但新型锰酸锂设计可以提高功率,安全性和寿命。
大多数锰酸锂与锂镍锰钴氧化物(NMC)混合,以提高比能量并延长寿命。这种组合带来了每个系统的最佳性能,而大多数电动汽车,如日产Leaf,雪佛兰Volt和宝马i3都选用了LMO(NMC)。电池的LMO部分可以达到30%左右,可以在加速时提供较高的电流;NMC部分提供了很长的续航里程。
锂离子电池研究倾向于将锰酸锂与钴,镍,锰和/或铝组合作为活性阴极材料。在一些架构中,少量硅被添加到阳极。这提供了25%的容量提升;然而,硅随着充放电膨胀和收缩,从而引起机械应力,容量提升通常与短的循环寿命紧密联系。
可以方便地选择这三种活性金属以及硅增强来提高比能(容量),比功率(负载能力)或寿命。消费电池需要大容量,而工业应用需要电池系统,具有良好的负载能力,寿命长,并提供安全可靠的服务。