电池修复是指通过物理或化学等手段对性能下降或失效的二次充电电池进行维修的统称。通过修复能恢复电池的容量,延长电池的使用寿命,提高电池各项性能。
电池又称化学电源,是能为用电器提供直流电源的装置,化学电源是通过氧化还原的电化学反应,将化学能转化为电能。一次电池是一次性应用的电池,二次电池是可多次反复使用的电池,因此这里的二次实际上是多次的意思。二次电池又称为可充电电池或蓄电池。
电池修复是指通过物理或化学等手段对性能下降或失效的电池进行维修的统称。
二次电池又称为“充电电池”,是指在电池放电后可通过充电的方式使活性物质激活而继续使用的电池。市场上主要充电电池有“镍氢”、“镍镉”“铅酸(铅蓄电池)”、“锂离子(包括锂电池和锂离子聚合物电池)”等。铅酸电池修复的方法较多,有“水疗法”“浅循环大电流充电法”“纳米碳溶胶电池活化剂修复”“脉冲电池修复仪修复”“电池修复液修复”等。
硫酸盐化
不可逆的硫酸盐化,简称硫酸盐化.铅酸蓄电池在放电时,正负极板都产生一种化合即硫酸铅,硫酸铅是一种难溶于水,不导电的物质,在正常情况下,蓄电池在放电后形成的硫酸铅结晶比较小,充电时,在电的作用下,比较容易地溶解并还原成铅.如果使用不当,常常充电不足、失水、过放电等.硫酸铅就会形成粗大坚硬的结晶体,这时就很难用一般的方法将其还原成铅,所以被称之为不可逆的硫酸盐化,由于硫酸盐化,一方面,它可以阻挡硫酸与其他活性物质接触并发生反应:另一方面,使活性物质数量减少,它可引起蓄电池容量下降,严重时会造成蓄电池寿命终止.
活性物的脱落
在我们修复废旧电池时,有些电池加水修复后,从注水孔内流出一些红褐色液体.即为脱落的活性物质,活性物质脱落原因有以下几种解释:1、电池受外力的影响,如振动,摔打等.2、α—PbO2.βPbO2变体模型.αPbO2是活性物质骨架,当电池在充放电时,一部分α—PbO2转化为β—PbO2从而导致软化脱落.3、随着循环进行,活性物质由无定性态逐渐晶形化,即结晶度增加,水化聚合物链数目减少,凝胶压电阻增加,晶粒间电接触恶化,该活性物质脱落.4、还有人们认为,随着充电和放电的不断进行,活性物质形成若干密集的团块,当团块间缺乏足够的连接时,活性物质就会脱落,电池失效.
电池的电压
电池正负两极的电势差称蓄电池的电压,一般用万用表来测量.在电池修复过程中,其电压有三种表现形式:第一种叫空载电压,又称为开路电压,就是电池即不充电又无负载的情况下测量到的电池电压:第二种叫负载电压,就是电池放电过程中某个时段所测量的电池电压.第三种叫在线电压,就是电池在充电过程中某一时刻所测量的电压,了解三种电压测量方法,对判断电池是否断路或短路;电池内阻计算具有重要的意义.
蓄电池的容量
蓄电池的容量是衡量蓄电池性能的一项重要指标.一般用安时来表示.放电时间(小时)与放电电流(安培)的总称,即容量=放电时间×放电电流.电池的实际容量,取决于电池中活性物质的多少和活性物质的利用率.活性物质是量越多,活性物质利用率就越高,电池的容量也就越大.反之容量越小。
铅蓄电池由正极板群、负极板群、电解液和容器等组成。正极板是棕褐色的二氧化铅(PbO2),负极板是灰色的绒状铅(Pb),当两极板放置在浓度为27%~37%硫酸(H2SO4)水溶液中时,极板的铅和硫酸发生化学反应。
铅酸蓄电池充、放电化学反应的原理方程式如下:
正极:PbO2+2e+SO42-+4H+==PbSO4+2H2O
负极:Pb-2e+SO42-==PbSO4
总反应:PbO2+2H2SO4+Pb==2PbSO4+2H2O
铅酸蓄电池充电时极板上的硫酸铅分别变成海绵状铅和氧化铅,固定在其中的硫酸根离子释放到电解液,电解液中的硫酸浓度不断变大;反之放电时阳极中的氧化铅和阴极板上的海绵状铅与电解液中的硫酸发生反应变成硫酸铅,而电解液中的硫酸浓度不断降低。当铅酸蓄电池充电不足时,阴阳两极板的硫酸铅不能完全转化变成海绵状铅和氧化铅,如果长期充电不足,则会造成硫酸铅结晶,使极板硫化,电池品质变劣;反之如果电池过度充电,阳极产生的氧气量大于阴极的吸附能力,使得蓄电池内压增大,导致气体外溢,电解液减少,还可能导致活性物质软化或脱落,电池寿命大大缩短。
水疗法
对已硫化电池,可以先将电池放电,倒出原电解液并注入密度在1.10g/cm3以下较稀电解液,即向电池中加水稀释电解液,以提高硫酸铅的溶解度。采用20h率以下的电流,在液温不超过20℃~40℃的范围内较长时间充电,最后在充足电情况下用稍高电解液调整电池内电解液密度至标准溶液浓度,一般硫化现象可解除,容量恢复至80%以上可认为修复成功。
此法机理,用降低酸液密度提高硫酸盐的溶度积,采取小电流长时间充电以降低欧姆极化延缓水分解电压的提早出现,最终使硫化现象在溶解和转化为活性物质中逐渐减轻或消除。
此法特点对于加水蓄电池比较适用,对于硫化严重现象亦可反复处理,无须投资设备即可自行修复,缺点是过程太繁琐对密封电池不太实用。
浅循环充电法
对已硫化电池,采用大电流5h率以内电流,对电池充电至稍过充状态控制液温不超过40度为宜,然后放电30%,如此反复数次可减轻和消除硫化现象。
此法机理,用过充电析出气体对极板表面轻微硫化盐冲刷,使其脱附溶解并转化为活性物质。
此法特点,对于轻微硫化可明显修复。但对老电池不适用,因为在析出气体冲刷硫酸盐的同时也对正极板的活性物产生强烈冲刷,使活性物质变软甚至脱落。
修复仪修复
对于硫化电池,可用一些专用的脉冲修复仪对电池充放电数次来消除硫化。[1]
此法机理,从固体物理上来讲,任何绝缘层在足够高的电压下都可以击穿。一旦绝缘层被击穿,就会由绝缘状态转变为导电状态。如果对电导差阻值大的硫酸盐层施加瞬间的高电压,就可以击穿大的硫酸铅结晶。如果这个高电压足够短,并且进行限流,在打穿硫化层的情形下,控制充电电流适当,就不会引起电池析气。电池析气量取决于电池的端电压以及充电电流的大小,如果脉冲宽度足够短,占空比够大,就可以在保证击穿粗大硫酸铅结晶的条件下,同时发生的微充电来不及形成析气,如果含有负脉冲去极化,就更能保证在击穿硫酸盐层时极板的气体析出,这样就实现了脉冲消除硫化。此法特点,市场上的脉冲修复充电器参差不齐,很多脉冲充电器甚至是专用修复仪的脉宽比、占空比、负脉冲设计得并不合理不能到去硫化的作用。
纳米碳溶胶电池活化剂修复
电池活化剂:纳米碳溶胶是纳米碳材料的一种类型。纳米碳材料是指分散相尺度至少有一
维小于100nm的碳材料。在电场的作用下,活化剂的活性成份能固化极板;崩解不可逆硫酸盐结晶;均匀地吸附在极板表面形成保护膜,防止极板活性物质脱落和极板硫化、极化、铅枝晶化的形成;激活电池的活性物质;降低电池内阻,增进电池电化学反应。此类修复液只对电池的修复效果较好,修复后的电池能用12个月以上。[2]