深度介绍影响动力锂离子电池安全性因素

2021-07-27      784 次浏览

影响动力锂电池安全性能的因素贯穿了一个动力锂电池从电芯选材到使用终结的生命周期的始终,因此原由复杂多样层次丰富。电芯材料本身,电芯的制造过程,电池集成中有关bMS(电池管理系统)和安全性方面的设计和使用工况都是锂离子电池安全性表现的影响因素。


在这些环节中,出现制造误差和滥用工况是无论要怎么样也难以防止的,所以在这个实际条件下,对电池发生热失控的预案设计就显得尤其紧要。本文通过对锂离子动力锂电池安全性能影响因素的梳理总结,以期为其在高能量/高功率范畴的使用和研究供应可靠的根据。


1.前言


锂离子电池因为其具备高能量密度,高功率密度和长使用寿命的特点,在化学储能器件中脱颖而出,今朝在便携式电子产品范畴已经技术成熟广泛使用了,如今在国家的政策支持下,在电动汽车范畴和大规模储能范畴的需求量也呈爆发式的上升。


锂离子电池在通常情况下是安全的,但是,时有安全性事故的报道呈今朝公众面前。比较著名的有近几年的波音公司737和b787飞机电池着火,比亚迪电动汽车起火,特斯拉MODELS起火这些锂离子电池安全性事故进入公众视野的最早时间可以追溯到4、5年往日。发展到今朝,安全性依然是制约锂离子电池在高能量/高功率范畴使用的关键性因素。热失控不仅是发生安全性问题的本质原由,也是制约锂离子电池性能表现的短板之一。


锂离子电池的潜在安全性问题很大程度上影响了消费者的信心。虽然人们一直期望bMS能够准确地监控安全状况(SOS)并能预测和阻止一些故障的发生,但是,由于热失控的情况复杂多样,很难由一种技术系统保障其生命周期中所面对的所有安全状况,所以,对其引发原由的分解和研究对一个安全可靠的锂离子电池来说依然是必要的。


2.电芯材料的选择


锂离子电池的内部组成重要为正极|电解质|隔膜|电解质|负极,在此基础上再进行极耳的焊接,外包装的包裹等步骤最终形成一只完整的电芯。电芯再经过初始的充放电,化成分容排气等步骤以后,就可以出厂使用了。这个过程的第一步,是材料的选择。影响材料的安全性因素重要是其本征的轨道能量、晶体结构和材料的性状。


正极材料


正极活性材料在电池中的重要用途是贡献比容量和比能量,其本征电极电势对安全性有一定的影响。例如,近年来,我国已经将低电压材料LiFePO4(磷酸铁锂)作为动力锂电池的正极材料广泛使用于交通工具(例如混合式动力车HEV,电动汽车EV)和储能设备(例如不间断电源UPS)中,但是LiFePO4在众多材料中所展现出来的安全性优点实际是以牺牲能量密度为代价的,也就是说会制约其使用者(如EV,UPS)的续航能力。而像NMC(LiNixMnyCo1-x-yO2)等三元材料虽然在能量密度上表现优异,但是作为动力锂电池的理想正极材料,安全性问题一直得不到完善的处理。为了研究正极材料的热行为,研究者们都做了很多工作,发现本征电极电势和晶体结构是影响其安全性的重要因素,如电极电位C和电解液的电化学窗口最高占据轨道HOMO是不是完美匹配,晶格中能否顺利同时通过多个锂离子通过对材料种类的选择和元素的掺杂可以加强正极活性材料的安全性能。


负极材料


负极活性材料对安全性能的影响重要来自于其本征的轨道能量和电解质LUMO,HOMO的配置关系。在快充的过程中,锂离子通过SEI(固态电解质界面)膜的速度可能比锂在负极的沉积速度慢,锂的支晶会随着充放电循环而不断生长,可能导致内短路而引燃可燃性的电解质发生热失控,这一特性限制了负极在快充过程中的安全性。惟有在以含碳材料作为缓冲层的锂合金的负极电动势和锂的电动势之差小于-0.7Ev,即ALi0.7eV的情况下,才能保证锂的沉积不会造成短路。出于安全性的考虑,动力锂电池应采用电动势小于1.0eV(相关于Li+/Li0)的负极材料实现安全的快充或者能够实现将充电电压控制在远低于锂的沉积电位的范围内。Li4Ti5O12在快充和快放范畴有安全性的优点,原由是其电动势为1.5eV(相关于Li+/Li0),低于电解质的LUMO。还有一种负极材料Ti0.9Nb0.1Nb2O7,它可以在1.3leVle1.6V(相关于Li+/Li0)的电压下快速充放30周以上,并且拥有300mAhg1的比容量,高于LTO。在放电的过程中因为不存在锂离子通过SEI膜和在负极上沉积的速度竞争,所以快放过程是安全的。


电解质和隔膜


电解质和隔膜对安全性的影响重要是其性状。


目前广泛使用的商用电解质的可燃性和液体状态对安全性来讲不是特别理想的选择。假如采用锂离子电导率sigmaLi+104Scm1的固态电解质,就可以一方面阻止锂支晶刺破隔膜到达正极从而处理安全性问题,另一方面也可以处理负极与碳酸盐电解质接触和正极与水性电解液接触时萌生的稳定性问题。当然,通过使用拥有更宽的电化学窗口(尤其是LUMO更高)的电解液,在电解质里添加一些阻燃材料,将混合的离子液体和有机液体电解质改性成为不易燃的电解液(与此同时离子传导率sigmaLi也不会降低太多)等手段也可以有效地提高安全性。


隔膜的机械强度(抗拉伸和穿刺强度)、孔隙率和是不是具备封闭功能是决定其安全性的紧要根据。


电芯的制造


从电极的配料开始,要经过一系列的如搅拌、拉浆、裁片、刮粉、刷粉、对辊、极耳铆接、焊接连片、贴胶纸、探测、化成等步骤。在这一系列的流程中,即使所有步骤都已经完成,仍有可能因为工作不到位而导致电池内阻升高或短路而形成安全性问题的隐患。如:焊接过程中萌生虚焊(正/负极片与极耳间,正极极片与盖帽间,负极极片与壳间,铆钉与接触内阻大等),料尘,隔膜纸太小或未垫好,隔膜有洞,毛刺未清理干净等。正负极的容量配比错误也可能会导致大量金属锂在负极表面沉积,浆料平均性不够也会导致活性颗粒物分布不均,造成充放电负极体积变化大而析锂,从而影响其安全性能。此外,化成步骤中SEI膜的生成质量也笔直决定了电池的循环性能和安全性能,影响其嵌锂稳定性和热稳定性。影响SEI膜的因素包括负极碳材料、电解质和溶剂的类别,化成时的电流密度,温度及压力等参数的设定,通过对材料的适当选择,化成工艺的参数调整,可以提高生成SEI膜的质量,从而提高电芯的安全性能。


4.电堆的集成


bMS电池管理系统


电池管理系统(bMS)在动力锂电池的使用中被寄予处理关键问题的厚望。管理系统要管理电池及其一致性,使其在不同条件下(温度,海拔高度,最大倍率,电荷状态,循环寿命)获得最大的能量储存、往返效率和安全性。bMS包括一些通用的模块:数据采集器,通讯单元和电池状态(SOC,SOC,SOP)评估模型。随着动力锂电池的发展,对bMS的管理能力要求也更多更严苛。新增了比如热量管理模块,高压监控模块通过这些安全性模块的新增,可望改善动力锂电池在使用过程中的安全可靠性。


电堆的集成设计


电池发生热失控后会引发冒烟、起火、爆炸等具有破坏性的行为,危害到使用者的人身安全。即使选用理论上最安全的配置方式,也不足以让人高枕无忧。如选用LiFePO4和Li4Ti5O12做成安全而适用于快速充放电电池的正极和负极材料,他们的电动势都位于电解质的电化学窗口内,也不再要SEI膜。但是,即是这样也会因为氧化还原电对会出今朝阴离子的P轨道顶部或者和阳离子的4S轨道发生交叠而不足以应付该电极在一些工况下的工作情况。再合理的电芯设计和制造也无法防止使用工况中的意外情况发生,惟有合理的电池组集成设计才可以让电堆在电芯出问题的情况下及时止损。


如前所述,电池的安全性和续航能力在材料的层面是一对互相矛盾的结果。为了解决安全性和续航能力的平衡问题,TeslaMotorsCo.Ltd率先做出了典范给了我们很好的启示。特斯拉的ModelS使用了松下公司(PanasonicCo.Ltd)的高能量密度的NCR18650A型电池,在一个电堆中使用了7000多节电芯。这本是一个发生热失控几率很高的组合方式,但通过对电堆集成及其bMS的设计,使用了很多创新性专利,使ModelS在实际使用过程中发生安全事故的几率大大降低。以特斯拉的公开专利为例,其中对单体安全性能、模组module安全性能和电池pack总成安全性能的增强可以或多或少代表处理集成的先进方法。


Tesla通过在电芯的电极处、外壳上添加防火材料和套管,在单体之间保持最小安全距离,采用垫片保持单体在起火后的间距维持不变,使用高效安全阀预测单体破碎位置,单体安全阀门阀门打开后即切断单体与电器的连接,从而戒备单体电芯间的热量扩散和发生热失控之后引起的链式反应。同时,通过在电池的电极和电池壳的内表面之间布置绝热层,在模组间布置绝缘层,将Pack分区进行保护,从而阻隔模组间在发生热失控发生后的热量传导和失控扩散。这些措施从电芯到模组的层面,层层设防,以期在内部热失控发生后最大限度地及时止损。


热失控预案设计


关于热失控发生后的预案设计方式多种类,多层面,除了上述的各种集成时考虑的安全性设计外,还有布控冷却管道为电池冷却和热失控主动缓和系统启动喷出冷却液体以消减热失控萌生的影响;子电堆安全阀门及时打开,让热失控萌生的高温气体及时排出体系,再由总阀门排出;利用内置的其他系统吸收热失控高温萌生的能量,降低危害最后,一旦发生前序手段无法控制的情况,通过,在pack所在位置的底部加装防弹板,在乘员舱和pack层之间加阻热层以最大可能性减小热失控发生后所带来的人身伤害。这些设计不仅可以使内部热失控时的能量及时消减,也可以预见在电池层面彻底失去控制后,灾难性后果仍在掌控范围内从而从根本上保障使用者的人身安全。


5.电池的滥用


即使锂离子电池在如前所述的制造集成过程中都完美无瑕,在用户实际使用的工况中,也难以防止滥用的情况。充放电制度(过充过放),环境温度(热箱),其他滥用(针刺,挤压,内短路)等,加上新国标新增的环境湿度(海水浸泡)都是因为滥用问题而造成安全性问题的原由。过充会造成正极活性材料晶体塌陷,锂离子脱嵌通道受阻,从而使内阻急剧升高,萌生大量焦耳热,同时也会使负极活性材料嵌锂能力降低而萌生锂支晶造成短路的后果。环境温度过热会造成锂离子电池内部一系列链式化学反应,包括隔膜的熔解,正/负极活性材料与电解质的反应,正极/SEI膜/溶剂分析,嵌锂负极与粘结剂的反应等。针刺/挤压都是在局部造成内短路,和内短路相同在短路区集中大量热而造成热失控的后果。以上研究已经很多,本文不再一一赘述。


6.总结


动力锂电池的安全性能决定了锂离子电池在动力范畴的市场和将来,影响动力锂电池安全性能的因素贯穿了一个动力锂电池从电芯选材到使用终结的生命周期的始终,因此原由复杂多样层次丰富。材料本身的本征轨道能量,晶体结构和性状决定了一个电芯的本征安全性能;电芯的制造过程中每一个工艺环节精益求精的程度,自动化程度和化成条件设置决定了其循环性能和安全性能,影响其嵌锂稳定性和热稳定性;电池集成中有关bMS和安全性方面的设计可以切实地保障电池的安全性,电池的制造和使用工况不可能始终处于理想状态,出现制造误差和滥用工况是无论要怎么样也难以防止的,在这个实际条件下,对电池发生热失控的各种预案设计就显得尤其紧要。通过对特斯拉公司公开的专利的学习让我们可以借鉴到从电芯到电池系统阻止热量传递戒备热失控的链式扩散的办法;使用冷却喷淋系统,安全阀门内部等设施消耗高热量以消减热失控萌生的影响;通过对载体的加固设计让热失控发生后对人身伤害程度降到最低值。


总之,锂离子动力锂电池的安全性问题研究任重而道远,唯有理论结合实际不断创新,才能迎来在高能量/高功率使用范畴真正意义上的辉煌。

相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号