薄膜太阳能电池原理
在化学电池中,化学能直接转变为电能是靠电池内部自发进行氧化、还原等化学反应的结果,这种反应分别在两个电极上进行。负极活性物质由电位较负并在电解质中稳定的还原剂组成,如锌、镉、铅等活泼金属和氢或碳氢化合物等。正极活性物质由电位较正并在电解质中稳定的氧化剂组成,如二氧化锰、二氧化铅、氧化镍等金属氧化物,氧或空气,卤素及其盐类,含氧酸及其盐类等。
电解质则是具有良好离子导电性的材料,如酸、碱、盐的水溶液,有机或无机非水溶液、熔融盐或固体电解质等。当外电路断开时,两极之间虽然有电位差(开路电压),但没有电流,存储在电池中的化学能并不转换为电能。当外电路闭合时,在两电极电位差的作用下即有电流流过外电路。
同时在电池内部,由于电解质中不存在自由电子,电荷的传递必然伴随两极活性物质与电解质界面的氧化或还原反应,以及反应物和反应产物的物质迁移。电荷在电解质中的传递也要由离子的迁移来完成。因此,电池内部正常的电荷传递和物质传递过程是保证正常输出电能的必要条件。充电时,电池内部的传电和传质过程的方向恰与放电相反;电极反应必须是可逆的,才能保证反方向传质与传电过程的正常进行。
因此,电极反应可逆是构成蓄电池的必要条件。为吉布斯反应自由能增量(焦);F为法拉第常数=96500库=26.8安·小时;n为电池反应的当量数。这是电池电动势与电池反应之间的基本热力学关系式,也是计算电池能量转换效率的基本热力学方程式。实际上,当电流流过电极时,电极电势都要偏离热力学平衡的电极电势,这种现象称为极化。电流密度(单位电极面积上通过的电流)越大,极化越严重。极化现象是造成电池能量损失的重要原因之一。极化的原因有三:①由电池中各部分电阻造成的极化称为欧姆极化;②由电极-电解质界面层中电荷传递过程的阻滞造成的极化称为活化极化;③由电极-电解质界面层中传质过程迟缓而造成的极化称为浓差极化。减小极化的方法是增大电极反应面积、减小电流密度、提高反应温度以及改善电极表面的催化活性。
薄膜太阳能电池优缺点
薄膜型太阳能电池由于使用材料较少,就每一模块的成本而言比起堆积型太阳能电池有着明显的减少,制造程序上所需的能量也较堆积型太阳能电池来的小,它同时也拥有整合型式的连接模块,如此一来便可省下了独立模块所需在固定和内部连接的成本。
未来薄膜型太阳能电池将可能会取代现今一般常用硅太阳能电池,而成为市场主流。非晶硅太阳能电池与单晶硅太阳能电池或多晶硅太阳能电池的最主要差异是材料的不同,单晶硅太阳能电池或多晶硅太阳能电池的材料都疏,而非晶硅太阳能电池的材料则是SiH4,因为材料的不同而使非晶硅太阳能电池的构造与晶硅太阳能电池稍有不同。
SiH4最大的优点为吸光效果及光导效果都很好,但其电气特性类似绝缘体,与硅的半导体特性相差甚远,因此最初认为SiH4是不适合的材料。但在1970年代科学家克服了这个问题,不久后美国的RCA制造出第一个非晶硅太阳能电池。虽然SiH4吸光效果及光导效果都很好,但由于其结晶构造比多晶硅太阳能电池差,所以悬浮键的问题比多晶硅太阳能电池还严重,自由电子与电洞复合的速率非常快;此外SiH4的结晶构造不规则会阻碍电子与电洞的移动使得扩散范围变短。
基于以上两个因素,因此当光照射在SiH4上产生电子电洞对后,必须尽快将电子与电洞分离,才能有效产生光电效应。所以非晶硅太阳能电池大多做得很薄,以减少自由电子与电洞复合。由于SiH4的吸光效果很好,虽然非晶硅太阳能电池做得很薄,仍然可以吸收大部分的光。
非晶硅薄膜型太阳能电池的结构不同于一般硅太阳能电池,如图9所示,其主要可分为三层,上层为非常薄(约为0.008微米)且具有高掺杂浓度的P+;中间一层则是较厚(0.5~1微米)的纯质层(Intrinsiclayer),但纯质层一般而言通常都不会是完全的纯质(Intrinsic),而是掺杂浓度较低的n型材料;最下面一层则是较薄(0.02微米)的n。而这种p+-i-n的结构较传统p-n结构有较大的电场,使得纯质层中生成电子电洞对后能迅速被电场分离。而在P+上一层薄的氧化物膜为透明导电膜(TransparentConductingOxide:TCO),它可防止太阳光反射,以有效吸收太阳光,通常是使用二氧化硅(SnO2)。
非晶硅太阳能电池最大的优点为成本低,而缺点则是效率低及光电转换效率随使用时间衰退的问题。因此非晶硅太阳能电池在小电力市场上被广泛使用,但在发电市场上则较不具竞争力。