锂离子电池各种负极材料性能及优缺点介绍

2021-04-30      4466 次浏览

锂离子电池重要负极材料有锡基材料、锂基材料、钛酸锂、碳纳米材料、石墨烯材料等。锂离子电池负极材料的能量密度是影响锂离子电池能量密度的重要因素之一,锂离子电池的正极材料、负极材料、电解质、隔膜被称为锂离子电池的四个最核心材料。


碳纳米管


碳纳米管是一种石墨化结构的碳材料,自身具有优良的导电性能,同时由于其脱嵌锂时深度小、行程短,作为负极材料在大倍率充放电时极化用途较小,可提高电池的大倍率充放电性能。


然而,碳纳米管直接作为锂离子电池负极材料时,会存在不可逆容量高、电压滞后及放电平台不明显等问题。如Ng等采用简单的过滤制备了单壁碳纳米管,将其直接作为负极材料,其


碳纳米管在负极中的另一个应用是与其他负极材料(石墨类、钛酸锂、锡基、硅基等)复合,利用其独特的中空结构、高导电性及大比表面积等优点作为载体改善其他负极材料的电性能。如郭等采用化学气相沉积法,在膨胀石墨的孔洞中原位生长碳纳米管,合成了膨胀石墨/碳纳米管复合材料,其首次可逆容量为443mAh/g,以1C倍率充放电循环50次后,可逆容量仍可达到259mAh/g。碳纳米管的中空结构及膨胀石墨的孔洞,供应了大量的锂活性位,而且这种结构能缓冲材料在充放电过程中出现的体积效应。


石墨烯


2004年英国Manchester大学研究者首次发现石墨烯材料,并获得诺贝尔奖。石墨烯是一种由碳六元环形成的新型碳材料,具有很多优异的性能,如大比表面(约2600m2g-1)、高导热系数(约5300Wm-1K-1)、高电子导电性(电子迁移率为15000cm2V-1s-1)和良好的机械性能,被作为锂离子电池材料而备受关注。


石墨烯直接作为锂离子电池负极材料时,具有非常可观的电化学性能。试验室曾采用水合肼作为还原剂、制备了丛林形貌的石墨烯片,其兼具硬碳和软碳特性,且在高于0.5V电压区间,表现出电容器的特性。


石墨烯负极材料在1C放电倍率下,首次可逆容量为650mAh/g,100次充放电循环后容量仍可达到460mAh/g。石墨烯还可作为导电剂,与其他负极材料复合,提高负极材料的电化学性能。如Zai等采用超声分散法制备了Fe3O4/石墨烯复合材料,在200mA/g的电流密度下放电,经过50次循环后,容量为1235mAh/g;在5000和10000mA/g电流密度下放电,经过700次循环后,容量分别能达到450mAh/g和315mAh/g,表现出较高的容量和良好的循环性能。


钛酸锂


尖晶石型钛酸锂被作为一种备受关注的负极材料,因具有如下优点:


1)钛酸锂在脱嵌锂前后几乎零应变(脱嵌锂前后晶胞参数a从0.836nm仅变为0.837nm);


2)嵌锂电位较高(1.55V),防止锂枝晶出现,安全性较高;


3)具有很平坦的电压平台;


4)化学扩散系数和库伦效率高。


钛酸锂的诸多优点决定了其具有优异的循环性能和较高的安全性,然而,其导电性不高、大电流充放电时容量衰减严重,通常采用表面改性或掺杂来提高其电导率。如肖等以Mg(NO3)2为镁源,通过固相法制备了Mg2+掺杂的钛酸锂,表明掺杂Mg2+并没有破坏钛酸锂的尖晶石晶体结构,且掺杂后材料的分散性更佳,其在10C放电倍率下的比容量可达到83.8mAh/g,是未掺杂材料的2.2倍,且经过10次充放电循环后容量无明显衰减,经交流阻抗测试表明,掺杂后材料的电荷转移电阻明显降低。Zheng等通过高温固相法,分别采用Li2CO3和柠檬酸锂作为锂源,制备了纯相的钛酸锂和碳包覆的钛酸锂。


实验表明,经碳包覆的钛酸锂具有较小的粒径和良好的分散性,表现出更优的电化学性能,重要归因于碳包覆提高了钛酸锂颗粒表面的电子电导率,同时较小的粒径缩短了Li+的扩散路径。


硅基材料


硅作为锂离子电池理想的负极材料,具有如下优点:


1)硅可与锂形成Li4.4Si合金,理论储锂比容量高达4200mAh/g(超过石墨比容量的10倍);


2)硅的嵌锂电位(0.5V)略高于石墨,在充电时难以形成锂枝晶;


3)硅与电解液反应活性低,不会发生有机溶剂的共嵌入现象。


然而,硅电极在充放电过程中会发生循环性能下降和容量衰减,重要有两大原因:


1)硅与锂生成Li4.4Si合金时,体积膨胀高达320%,巨大的体积变化易导致活性物质从集流体中脱落,从而降低与集流体间的电接触,造成电极循环性能迅速下降;


2)电解液中的LiPF6分解出现的微量HF会腐蚀硅,造成了硅电极容量衰减。


为了提高硅电极的电化学性能,通常有如下途径:制备硅纳米材料、合金材料和复合材料。如Ge等采用化学刻蚀法制备了硼掺杂的硅纳米线,在2A/g充放电电流下,循环250周后容量仍可达到2000mAh/g,表现出优异的电化学性能,归因于硅纳米线的锂脱嵌机制能有效缓解循环过程中的体积膨胀。Liu等通过高能球磨法制备了Si-NiSi-Ni复合物,然后利用HNO3溶解复合物中的Ni单质,得到了多孔结构的Si-NiSi复合物。


通过XRD表征可知,体系中存在NiSi合金,其不仅为负极材料供应了可逆容量,还与粒子内部的孔隙协同,缓冲硅在充放电循环过程中的体积膨胀,提高硅电极的循环性能。Lee等采用酚醛树脂为碳源,在氩气气氛下于700℃高温裂解,制备了核壳型Si/C复合材料,经过10次循环后复合物的可逆容量仍可达1029mAh/g,表明采用Na2CO3在硅表面与酚醛树脂间形成共价键,然后进行高温裂解,可改善硅与裂解碳间的接触,从而提高负极材料的循环性、减小不可逆容量损失。


相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号