动力锂电池热失控可由单体内部因素及外部因素引起。内部因素一般为过充、低温充电、负极缺陷等导致负极形成的化合物穿透隔膜引发短路,或电池内部杂质刺穿隔膜引发短路等;外部因素包括正负极短路,大电流放电,高温,挤压、针刺等。由于单体内部或外部因素的发生,电池单体温度持续升高;以锂离子电池为例,单体高于60℃时,SEI膜开始分解,全部分解后露出负极表面;随着电池温度的提升,电池隔膜高温收缩,正负极活性物质接触,发生短路,瞬间释放出大量的热量。短路点高温进一步导致正极氧化物分解,释放出游离状态氧,并与有机电解液发生氧化反应,释放出更多的热量,最终导致电池发生起火爆炸。
电池单体发生起火爆炸后,一方面通过模块连接部分向其它单体进行热传导,另一方面通过热对流、热辐射向其它单体进行传热,模块或电池系统的散热装置也将起到传热的用途;而单体的持续升温将导致热失控发生,从而热失控从一个单体扩展到其他单体。一个单体的热失控短路将引起其它单体的外短路,而短路继续引起其他单体温度升高,从而引起单体的热失控扩散。一个单体热失控起火爆炸后的火焰和喷射出的内部物质将直接对其他单体出现瞬间加热用途,造成其他单体的短路和温度升高,从而引发热失控。单个电芯的爆炸起火还有可能引起其他线束、覆盖件的起火,从而再次引发其他电芯的温度升高,发生热失控现象。
根据电池热失控及传播机理,可提高单体电池性能,防止热失控的发生;同时在成组技术方面可采取热失控阻断技术,在单个电池热失控时不扩散到其它单体。热失控阻断技术重要在热传播和扩散的路径进行处理,以达到阻断电池单体发生连锁热失控反应的目的。例如阻断或降低热辐射、对流、传导对周围单体的影响;使用散热系统或主动安全技术对单体进行快速降温;使用喷射导流技术防止喷射物对其他单体的影响;使用过流防护、短路防护、熔断技术防止一个单体的短路影响其它单体;通过阻燃材料的使用防止单体周围材料的燃烧引起单体热失控连锁反应,通过对电气件安全爬电距离,电气安全间隙的设计防止外短路的发生等。根据引起热失控的内部因素和外部因素,可针对性的设计相应防护措施,从单体-模组-电池包三个级别逐级控制,在热失控传播路径上形成安全防护网,达到保证整车安全的目的。