铅酸电池的工作原理
铅酸电池是一种使用最广泛的蓄电池,它以海绵状的铅作为负极,二氧化铅作为正极,用硫酸水溶液作为电解液,它们共同参与电池的电化学反应。化学反应原理如下:
pbO2+2H++2HSO4-+pb→2pbSO4+2H2O
从反应原理可以看到,在放电时,正负极材料都与电解液中的硫酸反应生成硫酸铅,正常情况下,所生成的硫酸铅结构疏松,并且其晶体非常细小,电化学活性很高,这种活性很高的硫酸铅在充电时可以在电流用途下重新生成正极的二氧化铅和负极的海绵状铅。通过这种稳定的可逆过程,电池实现了储存电能和释放电能的用途。
放电时生成硫酸铅的过程亦称为盐化反应、硫化反应,这种硫酸盐生成后的一段时间内活性很强。假如这段时间内未充电,未能及时转化为海绵状铅和二氧化铅。随温度下降,活性的硫酸铅会再结晶成为颗粒较大的晶体。这种白色粗晶粒硫酸铅导电性能很差,难溶解,充电时也不能再很容易地还原成海绵状铅和二氧化铅,形成了不可逆的硫酸盐化,严重时,这些结晶体附着在电极表面,阻挡了电解液与涂层活性物质的反应,造成内阻增大,容量下降,电解液温度过高,O2、H2溢出而失水,电极栅板变形,活性物质脱落,单格电池短路或断路等恶性循环发生。