1、从负极材料上提高锂离子电池能量密度和功率密度的方法
(1)多层自组装结构实现集成不同尺寸的材料的优点
在层状过渡金属氧化物中,Li和M(M=金属)阳离子占据O-阵列的八面体空隙。Li层位于两个相邻的MO6八面体层之间,Li离子具有二维(2D)扩散路径
(2)核心/蛋黄-壳层结构供应的协同效应
除了LiFePO4和LiMnPO4之外,LiFexMn1-xPO4也是一种很有前途的负极材料。例如Scrosati及其同事通过两步沉淀路线制备碳涂层的核-壳结构的LiMn0.85Fe0.15PO4-LiFePO4,很好的结合了LiMnPO4的高电位和LiFePO4的高稳定性。
(3)大孔、中孔和微孔的多孔结构适应体积膨胀并促进电解质渗透
独特的分层结构中有电解质膨胀的宏/中孔的网络和缓冲的保护性碳壳,有利于持续电子传导和快速离子传输。
2、从正极材料上提高提高能量密度和功率密度的方法
(1)纳米工程技术来增强转换型正极材料(CTAM)
转化反应通常是指Li+与过渡金属化合物(MaXb,M=Mn,Fe,Co,Ni,Cu,X=O,S,Se,F,N,P等)之间的氧化还原反应。其涉及具有高理论比容量的锂二元化合物(LinX)的形成和分解(方程式1)。通常,由M-X键的离子性确定的反应电位在相关于Li/Li+的0.5-1.0V的范围内,使得大多数过渡金属化合物都可以作为潜在的正极。
3、利用核心双壳电极促进柔性锂离子电池的高重量能量密度
虽然已报道的柔性材料具有优异的特性,但是它们重要的问题是机械稳定性程度。尽管碳纤维布(CC)的优异机械稳定性可以解决该问题,但CC仍然受到低表面积、更大重量和低存储容量的限制。正如Tong课题组所报道的在柔性CC核-壳阳极([emailprotected])上生长NiCo2O4纳米线(NCONWs)来设计单片核-双壳([emailprotected]CDS)。[emailprotected]@NCOCDS电极显示出优于原始CC涂层NCO([emailprotected])的锂储存性能。