近日,上海交通大学化学化工学院杨军教授研究团队在CellPress旗下的能源领域新刊Joule发表了题为“SiliconMicroparticleAnodeswithSelf-HealingMultipleNetworkBinder”的文章,文中所设计的多级网络结构并带有自愈合功能的水系粘结剂(PAA-P(HEA-co-DMA))可以有效缓解微米硅电极在充放电过程中由于活性物质的体积变化引起的颗粒粉化和电子导电缺失现象,进而获得性能优异的硅基负极。
硅具有很高的理论比容量和较低的氧化还原电极电势,被认为是下一代高能量密度锂离子电池最具潜力的负极材料之一。然而,它在循环过程中严重的体积变化,使电极结构松动和电子导电变差,并不断破坏电极表面的SEI膜和消耗电解液,从而降低了电池的循环效率和使用寿命。为了解决这些问题,许多先前的研究工作大多集中在设计不同结构的硅材料,如多孔化,纳米化以及多层复合,以降低活性相的体积效应,从而提高电池的循环稳定性。然而,这些策略很难甚至不可能实现硅材料的廉价以及大规模生产。
该论文从粘结剂的结构设计出发,合成了一种软-硬并举的具有多级网络结构的新型粘结剂,该聚合物具有一定的自愈合能力和优异的拉伸性能,可以有效地缓冲由于微米硅颗粒的体积变化而引起的应变,抑制硅颗粒在循环过程中的粉化,使微米级硅颗粒电极的电化学性能得到显著改善。在5A/g的大电流下比容量仍有约1850mAh/g,并具有优异的电化学可逆性。此外,该粘结剂也适用于微米氧化硅负极材料,可在9mAh/cm2的高面积容量下可逆循环。该研究结果对发展具有强体积效应的高容量电极具有重要的参考价值。
本论文工作得到科技部973计划(No.2014CB932303)和国家自然科学基金(No.21773154)的支持。