石墨烯芯片和硅芯片相比有什么特性和优势?

2018-07-01      11697 次浏览

石墨烯因其超薄结构以及优异的物理特性,在FET应用上展现出了优异的性能和诱人的应用前景.如Obradovic等研究发现,与碳纳米管相比,石墨烯FET拥有更低的工作电压﹔Wang等所制备的栅宽10nm以下的石墨烯带FET的开关比达10E7﹔Wu等采用热蒸发4H-SiC外延生长的石墨烯制备的FET,其电子和空穴迁移率分别为5400和4400cm2/(V·s),比传统半导体材料如SiC和Si高很多﹔Lin等制备出栅长为350nm的高性能石墨烯FET,其载流子迁移率为2700cm2/(V·s),截止频率为50GHz,并在后续研究中进一步提高到100GHz﹔Liao等所制备的石墨烯FET的跨导达3.2mS/μm,并获得了迄今为止最高的截止频率300GHz,远远超过了相同栅长的Si-FET(~40GHz)。然而,由于石墨烯的本征能隙为零,并且在费米能级处其电导率不会像一般半导体一样降为零,而是达到一个最小值,这对于制造晶体管是致命的,为石墨烯始终处于“开”的状态。

另外,带隙为零意味着无法制作逻辑电路,这成为石墨烯应用于晶体管等器件中的主要困难和挑战。因此,如何实现石墨烯能带的开启与调控,亟待研究和解决。据文献报道,一般采用两种方法实现石墨烯能带的开启与调控,即﹕掺杂改性和形貌调控。NatureNanotechnology评论明确指出﹕要深入挖掘石墨烯的优异物理特性,以制备高性能石墨烯FET,其重要基础和关键之一是获得宽度与厚度(即层数)可控的高质量石墨烯带状结构。带状石墨烯因其固有而独特的狭长“扶椅”或“之”状边缘结构效应、量子限域效应而具有丰富的能带结构,其能隙随着石墨烯的宽度减小而增大,且和石墨烯的厚度密切相关,成为石墨烯FET沟道材料的理想选择。纳米碳材料,特别是石墨烯具有极其优异的电学、光学、磁学、热学和力学性能,是理想的纳电子和光电子材料。石墨烯具有特殊的几何结构,使得费米面附近的电子态主要为扩展π态。由于没有表面悬挂键,表面和纳米碳结构的缺陷对扩展π态的散射几乎不太影响电子在这些材料中的传输,室温下电子和空穴在石墨烯中均具有极高的本征迁移率(大于100000cm2/(V·s)),超出最好的半导体材料(典型的硅场效应晶体管的电子迁移率为1000cm2/(V·s))。

作为电子材料,石墨烯可以通过控制其结构得到金属和半导体性管。在小偏压的情况下,电子的能量不足以激发石墨烯中的光学声子,但与石墨烯中的声学声子的相互作用又很弱,其平均自由程可长达数微米,使得载流子在典型的几百纳米长的石墨烯器件中呈现完美的弹道输运特征。典型的金属性石墨烯中电子的费米速度为υF=8×10e5m/s,室温电阻率为ρ=10E6Ω-cm,性能优于最好的金属导体,例如其电导率超过铜。由于石墨烯结构中的C–C键是自然界中最强的化学键之一,不但具有极佳的导电性能,其热导率也远超已知的最好的热导体,达到6000W/mK。此外石墨烯结构没有金属中的那种可以导致原子运动的低能缺陷或位错,因而可以承受超过10e9A/cm2的电流,远远超过集成电路中铜互连线所能承受的10e6A/cm2的上限,是理想的纳米尺度的导电材料。理论分析表明,基于石墨烯结构的电子器件可以有非常好的高频响应,对于弹道输运的晶体管其工作频率有望超过THz,性能优于所有已知的半导体材料。

现代信息技术的基石是集成电路芯片,而构成集成电路芯片的器件中约90%是源于硅基CMOS(complementarymetal-oxide-semiconductor),互补金属-氧化物-半导体)技术,而硅基CMOS技术的发展在2005年国际半导体技术路线图(InternationalTechnologyRoadmapforSemiconductors,ITRS)宣布将在2020年达到其性能极限。原因在CMOS技术的核心是高性能电子(n-)型和空穴(p-)型场效应晶体管(fieldeffecttransistor,FET)的制备,以及将这两种互补的场效应晶体管集成的技术。随着晶体管尺度的缩小,器件加工的均匀性问题变得越来越严重,其中最为重要的是器件的加工精度和掺杂均匀性的问题。采用传统的微电子加工技术,目前最好的加工精度约为5nm。随着器件尺度的不断缩小,对应的晶体管通道的物理长度仅为十几纳米,场效应晶体管源漏电极之间的载流子通道的长度的不确定性将不再可以忽略不计,所以半导体材料中的掺杂均匀性问题将是另一个难以克服的问题。

这个领域的主流方向一直是沿用硅基技术的思路,即通过掺杂,例如K掺杂来制备石墨烯n型器件,但结果都不尽如人意。其中主要的问题是石墨烯具有一个非常完美的结构,表面完全没有悬挂键,一般不和杂质原子成键,是自然的本征材料。采用与石墨烯结合较弱的K原子掺杂结果一是不稳定,二是很难控制,不大可能满足高性能集成电路的要求。2005年美国Intel公司Chau等人对纳米电子学的发展状况进行了总结,他们对石墨烯基器件的主要结论是:虽然其p型晶体管的性能远优于相应的硅基器件,但其n型石墨烯晶体管的性能则远逊于相同尺寸的硅基器件。集成电路的发展要求性能匹配的p型和n型晶体管,n型碳石墨烯晶体管性能的落后严重制约了石墨烯电子学的发展,发展稳定的高性能n型石墨烯器件成了2005年之后石墨烯CMOS电路研究领域最重要的课题之一。

从目前石墨烯电子学已经取得的进展来看,至少有两个重要的方面是可以确认的。第一是石墨烯器件相对于硅基器件来说具有更好的特性,无论是速度、功耗还是可缩减性,而且可以被推进到8nm甚至5nm技术节点,这正是2020年之后数字电路的目标。第二是石墨烯的数字集成电路的方案是可行的。在实验室人们已经实现各种功能的电路,原则上已经可以制备任意复杂的集成电路,特别是2013年9月26日美国斯坦福大学的研究人员在《Natures》杂志上报道采用碳纳米管制造出由178个晶体管组成的计算机原型。

虽然目前这个原型机尚在功耗、速度方面不能和基于硅芯片模式的先进计算机比肩,但这项工作在国际上引起了巨大反响,使得人们看到了碳基电子学时代初露的曙光。IBM发表的系统计算表明,石墨烯基的芯片不论在性能和功耗方面都将比硅基芯片有大幅改善。例如,从硅基7nm到5nm技术,芯片速度大约有20%的增加。但石墨烯7nm技术较硅基7nm技术速度的提高高达300%,相当15代硅基技术的改善。目前石墨烯材料的主要挑战来源于规模生产面临的高可控性材料加工问题,即必须在绝缘衬底上定位生长出所需管径大小的半导体石墨烯。但是到目前为止,对石墨烯生长进行严格的控制还是没有实现。另一个问题是供应链的问题,硅的成本及稳定性的优势还在,芯片厂及封装厂谁愿意开第一枪,就让我们拭目以待。

相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号