锂离子电池电解液假如没有副反应的发生,锂离子电池在理论上可以实现无限次循环。但是由于常规碳酸酯类电解液在正负极表面并不稳定,在使用过程中电解液会在正负极表面发生分解反应,导致电池容量的持续衰降。
电解质衰降
针对电解液在正负极表面的分解反应研究比较多,但是多数试验都是在实验室条件下进行的,电池以某个固定的循环制度进行反复的充放电引起电池的衰降,进而分析电池的衰降机理。但是在实际使用中,锂离子电池的工作状态要复杂的多,例如短时间的急加速,快速充电,长时间的搁置等是引起电解液分解的重要原因。
电解液衰减中都含有DMC、EMC等溶剂成分,这两种溶剂在使用中会发生酯交换反应,生成类似结构的DEC,这也是我们在多数的电解液中都发现存在少量DEC的原因(0.3-1.3%)。
在锂离子电池中除了溶剂会发生分解反应外,电解液中的LiPF6也会发生分解反应,通常我们认为锂盐的分解重要是由于电解液中存在的微量水分。通常而言,商业锂离子电池电解液中的水分含量小于20mg/L,但是从电动汽车上拆解下来的电池水分含量远远高于这一数值(995,643,113和290mgL-1)。LiPF6在水分用途下分解出现的产物POF3,由于反应活性比较高,因此只在部分的电解液中有POF3的存在,但是电解液中的POF3会进一步分解成产物DFP。虽然DFP是LiPF6的一种分解产物,但是实际上DFP能够帮助形成更加稳定的SEI膜,从而提升电池的循环性能。在LiPF6分解的过程中还形成了少量的HF,HF最终在负极形成LiF,成为SEI膜的一部分。