许多公司的锂离子电池产品能够实现低温下正常放电,但在同样的温度下,实现正常充电就比较吃力,甚至无法充电,当Li+嵌入石墨材料时,首先要去溶剂化,这个过程会消耗一定能量,阻碍了Li+扩散到石墨内部;相反,Li+在脱出石墨材料进入到溶液中时,会有一个溶剂化过程,而溶剂化不消耗能量,Li+可以快速脱出石墨。因此,石墨材料的充电接受能力要明显逊色于放电接受能力。
低温环境下,铁锂离子电池充电有一定的风险。因为随着温度的降低,石墨负极的动力学特性进步一变差,充电过程中,负极的电化学极化明显加剧,析出的金属锂容易形成锂枝晶,穿破隔膜并导致正负极短路。
尽量防止锂离子电池在低温下充电。当电池必须在低温下充电时,要尽可能选择小电流(即慢充)对锂离子电池进行充电,并在充电后对锂离子电池进行充分搁置,从而保证负极析出的金属锂能够与石墨反应,重新嵌入到石墨负极内部。
业内公司及科研机构对铁锂离子电池耐低温性能的探索和攻关,多着眼于对现有正负极材料的工艺改进,以及通过提高电池的局部环境温度为电池在低温下工作创造条件。
铁锂离子电池材料在走向纳米化,材料的粒径、电阻力、AB平面轴长大小三方面会影响电池的低温特性。从三种工艺生产的材料来看,层间距大的颗粒石墨,本体阻抗和离子迁移阻抗比较小;电解液方面,目前,低温磷酸铁锂离子电池已经在内蒙古、东北三省等地区大范围推广。
目前很多电池技术人员利用金属丝通电生热的原理,在电芯上加装镍箔片,镍箔片通电出现热量,使电池内部温度升高。达到一定温度后,箔片会自动断开以保障电池安全。据了解,在-30℃的实验环境,应用这项技术的电池,30秒即能快速升温至0℃以上,放电功率提高6倍以上,充电功率则提高10倍以上。