一般而言,电池材料的热稳定性是锂离子动力锂电池安全性的重要因素。这重要与电池材料的热活性有关。当电池温度升高时,电池内部会发生许多放热反应,假如出现的热量超过了热量的散失,就会发生热溢溃。锂离子电池材料之间重要放热反应有:SEI膜的分解;电解液分解;正极分解;负极与电解液的反应;负极与粘合剂的反应;此外,由于电池存在电阻,使用时也出现少量热量。
3.2.1正极材料
锂离子电池正极材料一直是限制锂离子电池发展的关键。和负极材料相比,正极材料能量密度和功率密度低,并且也是引发锂离子电池安全隐患的重要原因。正负极材料的结构对锂离子的嵌入和脱嵌有决定性影响,因而影响着电池的循环寿命。使用容易脱嵌的活性材料,充放电循环时,活性材料的结构变化小且可逆,有利于延长电池的寿命。在锂离子电池滥用的条件下,随着电池内部温度的升高,正极发生活性物质的分解和电解液的氧化,这两种反应将出现大量的热,从而导致电池温度的进一步上升,同时不同的脱锂状态对活性物质晶格转变、分解温度和电池的热稳定性影响相差很大。寻找热稳定性较好的正极材料是锂离子动力锂电池的关键。层状LiCoO2、LiNiO2、尖晶石LiMn2O4和橄榄石LiFePO4是目前研究较多的正极材料。LiCoO2热稳定性适中,电化学性能优异,但由于钴资源的限制,LiCoO2在锂离子动力锂电池方面的应用受到限制;LiNiO2虽然容量较高,但合成困难、循环性能较差,也不适合作为锂离子动力锂电池的正极材料;LiMn2O4热稳定性好、资源丰富、价格低廉,适合作为锂离子动力锂电池的正极材料;LiFePO4由于合成原料资源丰富,成本低,对环境无污染,又有较高的比容量、有效利用率、适宜的电压及较好的循环性能,是一种有应用前景的锂离子正极材料之一。
3.2.2负极材料
早期使用的负极材料是金属锂,而以金属锂为负极组装的电池在多次充放电过程中易出现锂枝晶,锂枝晶会刺破隔膜,导致电池短路、漏液甚至发生爆炸。使用嵌锂化合物防止了锂枝晶的出现,从而大大提高了锂离子电池的安全性。目前在锂离子二次电池中较具使用价值和应用前景的碳重要有三种:一是高度石墨化得碳,二是软碳和硬碳,三是碳纳米材料。
当前锂离子电池所用的负极材料大部分采用石墨,而石墨的理论适量比容量只有372mAh/g,体积比容量也只有800mAh/cm3。尽管目前研制出的医学热解碳具有700mAh/g的比容量,但是它的体积比容量还是非常有限。由于大功率的要,高能量密度的金属和金属化合物妒忌材料引起了广泛关注,研究重要向微小颗粒(纳米级)、单相向多相、掺杂非活性材料等方面发展。金属和合金类负极在循环过程中,体积会发生很大的变化,循环寿命短。为延长寿命,采用金属学上的近似法开发控制合金材料的组成和微观组织(纳米级)及表面处理技术。
研究表明:随着温度的升高,嵌锂状态下的碳负极将首先与电解液发生放热反应。在相同的充放电条件下,电解液与嵌锂人造石墨反应的放热速率远大于嵌锂的MCMB、碳纤维、焦炭等的反应放热速率。硬碳类材料、软碳类材料、石墨类材料的碳层间距约分别为0.38nm、0.34~0.35nm、0.335nm,当锂嵌入碳层后,层间距约为0.371nm。石墨类材料的层间距最小,其在锂离子电池的嵌入和脱出过程中形变最大,锂离子在此类碳层中的扩散速度也较慢,大电流充放电时,极化大、电阻大,电池的安全性差,硬碳类材料则相反。
然而也有人认为:石墨化程度新增可以降低锂离子扩散的活化性能,有利于锂离子的扩散,而硬碳类材料由于存在大量的空洞,大电流充放时,其表现接近于金属锂负极,安全性反而不好。在新材料的探索方面,锂化过渡金属氮化物及过渡金属磷族化合物是很好的例子,对该类材料的进一步研究有可能为锂离子蓄电池负极材料的发展注入新的活力。