当前,高容量储能装置成为便携电子设备以及电动汽车等新兴电子产品的迫切需求。由于硫具有低成本和环境友好等优势,锂硫电池(Li-S)拥有较高的理论比容量和能量密度,被视为最有应用前景的高容量存储体系之一。近期,我国科学院福建物质结构研究所结构化学国家重点实验室研究员王瑞虎课题组和温州大学教授杨植合作,实现了大幅提高锂硫电池稳定性的同时,新增其大功率放电性能。
这项成果有效解决了锂硫电池商业化应用方面面对的一些技术挑战。如固体硫化物的绝缘性、可溶性长链多硫化物的穿梭效应以及充放电期间硫的体积巨变,这些问题通常导致硫的利用率低、循环寿命差,甚至引起一系列安全问题。
该项研究将水蒸气刻蚀的多孔NbS2和高导电碘掺杂石墨烯(IG)复合到三元混合硫正极系统中,合成了由IG包裹的三明治型正极材料。在这种特殊三明治结构中,层状NbS2的高极性和强的亲和力促进多硫化物的物理拦截和化学吸附,协同解决了多硫化物溶解和穿梭效应的问题。NbS2的高电导率和孔隙率提高了界面电荷转移和离子迁移,从而提高了锂硫电池氧化还原反应。IG包围的夹层结构不仅可以使硫物质和层状NbS2(或IG)之间发生紧密接触,而且在充放电过程中能承受硫正极大的体积波动。由新技术组装的锂硫电池,在20-40C的高倍率下,表现出优异的循环稳定性。