在DAQ应用中使用非隔离DC/DC电源降压模块的优势

2020-06-20      1172 次浏览

本文将介绍与分立电源解决方法相比,电源模块帮助提高DAQ性能的一些方法。


DAQ的电源架构


在DAQ中,跨多个子系统看到并联电源轨和不同的负载电流(和纹波)要求并不罕见。图1展示了DAQ系统的电源架构以及电源模块如何为各种子系统生成所需的电源轨。


图1:使用电源模块的DAQ电源架构


使用电源模块有助于提高整体性能、效率和可靠性。电源模块还具有以下优势:


·同一封装中的输出电流通过优化的成本供应设计灵活性和可扩展性。


·通过自动脉冲频率调制(pFM)模式提高轻载效率的方法。


·负载调节期间具有出色的瞬态响应。


·通过集成、创新封装和组装的紧凑型解决方法。


·通过精选的无源元件选择改善了功率模块性能。


·可在很宽的温度范围内工作。


通过选择无源元件改善了功率模块性能


除封装选择和旨在缓解EMI和输出纹波的布局外,选择无源元件同样重要。非原装组件可能在原型阶段运行良好,但会出现压迫迹象,并导致现场损坏或故障。


电感器是DC/DC降压转换器设计中的关键组件之一。选择合适的电感器要时间和诀窍,包括了解电感铁芯的细微参数及其对电源性能和寿命的影响。电感器的一个常见问题是高温存储(HTS)测试期间的故障,这表明电感器能够长时间承受高温。


在HTS测试期间,电感器置于DC/DC转换器附近,限制气流。铁粉的涂层和/或粘合剂随着时间和高温条件开始分解,这导致铁损新增,并降低电源效率。在更高的输入电压和更高的开关频率下,问题最为明显。图2比较了HTS压力测试前后多个输入电压下电感的效率下降问题。


经检查,电感器通常看起来并未明显受损。电感的L和DCR值可能不会改变。但是,暴露在高温下会新增交流阻抗,如图2所示。


图2:HTS测试前后的效率下降以及电感器的AC阻抗变化


与此同时,德州仪器的电源模块集成了电感器。这些电感器随着时间的推移和温度的升高具有出色的性能。图3所示为暴露在高温后各类电感的HTS测试结果。我们的电源模块使用电感器,在HTS测试后,Q和铁芯电阻变化很小或无变化。


图3:德州仪器电源模块电感HTS性能


此外,我们的电源模块经受工作电压测试,以确保没有绝缘击穿。


具有自动pFM和负载瞬态响应的效率(总负载和轻负载)


电源模块供应MODE/SYNC选项,可在轻负载时转换为自动节能模式。正常操作期间,电源模块使用脉冲宽度调制(pWM)调节输出。


当负载电流极低时,控制逻辑转换为pFM操作和二极管仿真。在该模式中,高侧金属氧化物半导体场效应晶体管(MOSFET)接通一个或多个脉冲,以向负载供应能量。高侧MOSFET的导通时间取决于输入电压电平和预编程的内部电流电平(IpEAK-MIN)。输入电压越高,导通时间越短。关断时间的持续时间也取决于负载电流水平。较轻的负载导致较长的关闭时间。


这种操作模式在极轻负载下可实现出色的转换效率。使用自动pFM模式时,空载时的输出电压比强制脉冲宽度调制(FpWM)操作高出约1%。图4所示为pFM和FpWM模式的效率图。


负载瞬态响应是衡量电源如何应对电流需求的突然变化或电源跟踪负载阻抗变化的程度的指标。负载瞬态响应是一个越来越重要的性能参数,特别是关于微处理器或现场可编程门阵列。其具有低核心电压、高电流消耗和快速负载切换的特点。图4所示为电源模块的负载瞬态响应。


图4:功率模块效率和负载瞬态响应


若保持足够低的等效串联电阻,则可通过调整输出电容来改善瞬态响应。新增输入电容可增强对更长和/或更深的瞬态步长的响应。得益于每相电流的减少,新增变流器相位还可通过提高有效开关频率及允许更小的输出电感器和电容器来改善瞬态响应。


缩小解决方法尺寸


我们已开发出创新的用于功率模块的紧凑封装技术。


此类封装技术是如图5所示的四方扁平无引线(QFN)封装,具有单个铜引线框架。带旁路元件的集成电路(IC)安装在该引线框架上。通过将电感器安装在IC和无源元件上,开关节点也变得紧凑、长度较短,并降低EMI。示例包括德州仪器的LMZM33603和LMZM33602,它们均具有36V输入额定值,可供应高达3A的负载电流。


我们的MicroSip™或QFN封装技术可用于要更低功率的电源轨。此类封装技术使用裸DC/DC稳压器芯片并将其嵌入薄的印刷电路板基板中。铜迹线不是使用接合线,而是将芯片连接到基板,如图5所示。示例包括德州仪器的LMZM23601和LMZM23600,它们集成了输入旁路电容和电感,以供应更好的EMI性能。


图5:电源模块消息


可在很宽的温度范围内工作


电源模块的一个优点是它们可在高温条件下操作。通过优化的设计、封装、布局和合适的元件选择,功率模块即使在100°C的高温下也可供应50%的负载电流,如图6所示。


图6:环境温度与输出电流


使用电源模块生成反向电源


在DAQ中,选择用于采样AC模拟输入的ADC指定为±10.24V的输入范围。传感器的AC电流或电压输出使用增益放大器缩放到ADC输入范围,且用于缩放增益的运算放大器使用±12V直流电源供电。可使用多种方法生成所需的双极DC电源。一种方法是通过在反向降压-升压配置中使用功率模块来出现负电源。


在标准降压配置中,正极连接(VOUT)连接到内部电感,回路连接到系统地。在反向降压-升压配置中,系统接地连接到VOUT,回路现在是负输出。这种拓扑结构可实现反向输出电压,如图7所示。


图7:从降压转换为反向冲跳升压


结论


除供应上述详细的多种优势外,DAQ应用中的电源模块还可提高系统性能和可靠性,减少设计工作,并帮助设计人员优化电路板空间。德州仪器具有管脚兼容的电源模块系列,具有不同的负载电流和可编程输出电压,可为DAQ设计供应可扩展性。


参考阅读:使用DC/DC电源模块增强电网保护,控制和监控设备的DAQ性能:在该文中,我们讨论了电源模块如何供应更低的电磁干扰(EMI)和输出纹波,从而提高整体数据采集(DAQ)性能。


相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号