关于嵌入式开发者来说,如何在低功耗和高性能之间取得平衡,是一项艰巨而持久的工作。而电源管理和工作负载整合两种技术的诞生,正是为了帮助供应商解决这些困难与挑战。
通过基于策略性的电源管理和动态迁移来降低能耗
根据国际能源机构(IEA)最新的报告数据来看,能源消耗正在稳步上升并且在未来的一段时间仍会持续上升。该报告还预估,到2015年,全球的能源消耗每年将以2.5%的速度上升,其中矿物能源消耗占据了主导地位。上升的部分重要来自于发展我国家生活方式的改变,而世界第一产业将持续为全球能源消耗的日益减少做出贡献。
业界领先的电信运营商年报显示,电信业的能源消耗持续新增,并出现在一些国家能源消耗大户的名单上。因为这些运营商持续的引入复杂的信息和通信技术,导致外围硬件设备的需求数量剧增,因此对能源的需求也随之新增,进而导致二氧化碳排放量的新增,同时能耗的成本也随之上升。但是运营商长期的财务压力,势必要求在降低能耗支出,同时满足公司的社会责任需求和/或符合相应的法律法规。但是数据处理以及传输速率的提高,要更多的通信设备来支持,这反过来又扩大了电信业的总体功耗。
为了获得可持续的发展,电信运营商及设备供应商开始逐渐意识到并加强电源管理技术的投入,通过重点开发能源效率计划,实现节能减排。部署于网络系统中的AdvancedTCA®(ATCA)机箱,在其整个生命周期中,大部分二氧化碳排放重要来自于机箱本身的性能要以及冷却散热的需求。功耗则重要来自于运营阶段,在此阶段的二氧化碳排放量占整个产品生命周期总排放量的80%左右。运营阶段中的三个层次(辅助设备、网络设备和能量转换)将消耗能量,同时也是可以管理的部分。通过对相关技术的掌握,我们可以实现能耗的管理。
图1.仅有36%的能量消耗来自于网络设备,如服务器、存储设备以及网络装置,其中大部分的能量直接转化为热能,大约只有2.4%的能量是有效输出。如今,供应商所供应的基于ATCA架构的网络设备都采用了提升能源效率的解决方法,可以大幅节约辅助设备及电源转换过程中的能耗。
合理的设计关于散热管理非常重要,通过降低CpU的利用率,电源输出随之减少,进而降低机房内的散热需求。最终既降低了二氧化碳的排放,又减少了因散热出现的能源消耗成本。
电源管理的理念和技术
关于设备本身而言,也有一些设计理念可以用来帮助减少能耗。其中最为大家熟知的就是处理器级动态电源管理技术,这使得设备或系统可以被设置成不同的工作模式,如:性能/按需/节能/紧急。通过这项技术,可以对处理器进行动态电压调节和动态频率调节,从而进行有效的电源管理。通过动态电压调节和动态频率调节,处理器的核心电压、时钟频率或者两者都可以减小以降低能耗,同时还能满足系统的性能所需。功耗限制功能可以让系统或组件保持其能耗使用峰值在设定的数值范围内(此数值通常根据实际的服务模式下的策略而定),如CpU使用率的原始数据、并发会话数量等等。
ATCA机箱级的电源管理策略包含了用于负载整合的虚拟化动态迁移,此策略可以降低能耗和相关的成本/费用。服务器管理员可以借助动态迁移将一个正在运行的虚拟设备(VM)或应用在两个不同的物理设备间迁移,且不会断开与客户端的链接或应用。动态迁移最典型的一个应用就是云计算中的资源管理。电信运营商拥有的成千上万个虚拟设备(VM)都运行在其数据中心,为了节约能源和成本、负载均衡,这些电信运营商可以利用动态迁移对虚拟设备进行转移,而无需中断运行在这些虚拟设备中的客户应用程序。
实时迁移的配置策略可以基于能耗感知的迁移模式和/或负载调度的模式而定,这取决于首要目的是节能还是优质的服务品质。实时迁移节能的关键是有效地对服务进行打包并供应给更少的物理服务器,物理服务器数量的减少意味着对电力能源的需求就会减少,所出现的热量也随之减少,从而实现节能的最终目的。
虽然实时虚拟设备迁移具有诸多益处,如资源(CpU,内存等)的分配和能耗感知的整合,但是虚拟设备的迁移本身也要消耗额外的能量。曾经有一篇有关虚拟设备实时迁移的性能和能量模式的文章,发表在第20届高性能分布式计算国际研讨会会议论文集上,该篇文章讲述了一个测试方法,用来测试实时迁移的功耗。结果显示,当部署了能耗感知以及服务器整合模型后,实时迁移所消耗的能量大幅减少。这种模式引导的决策,大幅减少了72.9%的迁移成本,并且节能73.6%。
配置和控制管理策略
以电信行业为例,现今的ATCA机箱通常包括一组高品质的电源模块以及智能风扇系统,可以用来控制温度输出和功耗。我们使用一个典型的ATCA机箱来做相关的测试,通过自动调整策略(根据周围的温度来决定风扇的转速),风扇(整个机箱的1/8)的功耗可以减少40%。
关于机箱剩余的7/8部分,可以通过嵌入式软件设置每个刀片上的CpU、内存以及其他设备的频率和工作模式,从而实现动态电源管理和/或功耗限定。通过智能固件和软件层面的控制部署电源管理策略,可以大幅减少能耗。
从系统管理的角度来看,当系统的工作负载运行在满负荷水平之下时,就可以按既定策略实现动态电源管理。同时在峰值期间也可以使用动态电源管理以减少功耗。然而,当功耗(能量)节约模式启用时,处理器频率将降低,从而影响工作负载的性能和吞吐量。
功耗限定功能可以通过显示器或制动器的内部或外部处理实现。制动器可以提升处理器的电压或提升处理器/内存的频率。制动器也可以抑制处理器,即通过注入死循环来延迟对指令的处理。当功耗限定达到时以及限定技术启用时,工作负载的性能可能会受到影响。
嵌入式电源管理软件
电源管理软件的拓扑结构是由多个系统守护进程的组件构成,其中每个组件都会管理一个刀片,和一个客户端组件。