在2005年最新的IEC61000-3-2标准生效以前,大多数pC、显示器和电视机的电源在采用110至120V,60Hz的单相交流电供电时都会出现过量的电源线谐波。在这个更新更严格的IEC标准的推动下,电源厂商开始通过新增功率因数校正(pFC)来最大限度地减少电源线谐波。
为了解IEC61000-3-2的影响,最好先了解一下直接穿过电源线放置负载电阻(R)的理想情况(图1)。在这种情况下,正弦线路电流IAC与线路电压VAC成正比,且与该电压同相。因此:
这意味着,关于效率最高的无失真电源线操作来讲,所有的负载都应作为有效电阻(R),而消耗和供应的功率是RMS线路电压和线路电流的乘积。
不过,许多电子系统的负载都要交流到直流的转换。在这种情况下,典型电源的电源线上的负载由一个驱动电容的桥式二极管组成(图2)。它是电源线的非线性负载,因为此桥式整流器的两个二极管都位于输入交流电源线电压的正半周期或负半周期的直接电源通路中。此非线性负载仅在正弦电源线电压的峰值期间汲取电源线电流,这样会出现“多峰”输入电源线电流,从而引起电源线谐波(图3)。
非线性负载可使谐波大小与线路频率下的基本谐波电流具有可比性。图4显示了相关于线路频率下的基本谐波大小进行标准化的高阶谐波电流大小。不过,只有图1中给出的在与线路频率相同的频率下且与电源线电压同相的谐波电流(在此案例中为线路频率下的基本谐波)对供应给负载的平均功率起用途。这些谐波电流会影响同一电力线上的其他设备的工作情况。
假如θ=0°,则cosθ=1且p=IRMS*VRMS,这与电阻负载的情况相同。当pF为1时,负载消耗电源供应的所有能量。
假如θ=90°,则cosθ=0;因此负载收到的功率为零。供应功率的发电机必须供应IRMS*VRMS的功率(即使没有功率用于做有用功)。
因此,关于图2中的二极管桥式电容器案例,式2的pF含义中剩下的唯一一个变量就是线路电流IRMS,因为线路电压(VRMS)已通过电源线发电机固定至120V。电源线为供应给负载的给定平均功率而汲取的IRMS越高,功率因数(pF)就越低。图2中的AC-DC转换器采用120V的交流电源线电压供电,并向负载供应600W的功率,同时汲取10A的线路电流,该转换器的pF=0.5。不过,图1中pF为1的电阻负载仅从电源线中汲取5A的电流(该负载从120V交流电源线中汲取600W的功率)。
电力公司会因低pF负载而遭受损失,这是因为电力公司必须供应更高的发电能力,从而满足由于负载的低pF而出现的更大的线路电流的要求。不过电力公司只会按供应的平均功率(单位为瓦特)向用户收费——而不是按出现的伏安收费。
伏安与瓦特之间的这种差别要么以发热的形式出现,要么反过来体现到交流电源线上。校正这种情况的最常见方法是采用功率因数校正。
功率因数校正
IEC-61000-3-2标准含义了给定功率级别允许的最大谐波电流。该标准1995年和2001年的初始版本已被2005年的版本3更新。2005年版本3对每相耗费的功率在75至600W之间,耗费的电流≤16A的(D类)pC、显示器和电视机的电源线谐波电流提出了更加严格的要求。为满足这些要求,设计工程师必须在D类电源中采用有源功率因数校正(pFC)。
许多pFC电路都采用升压转换器。传统的pFC升压转换器中的一个限制因素是它只能由整流后的交流电源线供电,而这种电源线涉及两级功率处理(图5)。转换器出现的波形更好地说明了这个问题(图6)。此外,无法通过简单有效的方法在传统升压转换器中引入隔离。
采用升压转换器的全桥扩展(然后作为pFC转换器进行控制)是一种引入隔离的方法(图7)。不过,这种方法要在初级新增四个晶体管,在次级新增四个二极管整流器(晶体管和整流器均在100kHz的开关频率下工作),从而新增了复杂性。此外,四个新增的二极管位于以50/60Hz的线路频率工作的输入桥式整流器中。
除了低频正弦电流之外,线路电流还将在高开关频率下叠加输入电感纹波电流,这要通过交流电源线上的一个额外的高频滤波器进行滤波。由于新增了12个在硬开关模式下工作的开关,因此造成了较高的传导和开关损耗。据报道,这种两级方法及辅助开关器件的最高效率为87%。
由于升压直流转换增益的影响,这种方法还会出现启动问题。它要额外的电路对输出电容进行预充电,以便转换器能够启动。
要实现1kW或1kW以上的功率,设计工程师经常采用三级方法(图8)。在图8中,标准升压pFC转换器和隔离降压转换器位于输入的桥式整流器之后。这总共要14个开关。其中至少六个开关为高压开关,这样就进一步降低了效率,新增了成本。尽管如此,在使用最好开关器件的情况下,最高效率能够达到90%左右,该频率仍比两级方法的效率要高。
如要实现中低功率,则有一个替代方法,该方法通过采用前向转换器作为隔离级来减少开关数量(图9)。在采用这个方法之前,必须注意这一点:虽然现在有10个开关,但与全桥式方法相比,正向转换器中的四个开关器件向初级和次级开关施加了更大的电压应力。此外,全桥式方法还要