开关电源的系统电磁兼容设计有关知识介绍

2020-06-14      835 次浏览

随着电子技术的飞速发展,电子设备同时也朝着功能集成化,体积小型化方向发展,这给我们带来诸多的便利,但是各种电子设备之间的电磁耦合也成了工程师们面对的主要问题。电子环境污染的危害性不亚于传统的环境污染。而电磁污染作为环境污染的一部分也被提上了议程。电子设备在正常工作时候,会承受各种电磁干扰,包括自身内部器件的相互干扰,以及周围其他电子设备的干扰,同时会对周围其他的电子设备产生电磁干扰。电子设备在不同应用环境中(家用、工控、电力)要求差异性非常大,这方面可以参考通用标准IEC/EN61000-6系列或者对应产品的行业要求。


这种电磁干扰在传输途径方面主要是包括两个方面:一是沿着线束进行传输,这方面主要包括沿着电源端口进行传输以及信号端口进行传输;另一方面主要是沿着空间进行传输。


1电磁干扰:


电源在它的应用环境中必须符合对应的最低发射能量要求,否则就会对周围环境的设备产生干扰,标准IEC/EN61000-6按照通用类型的要求,分为工业环境设备要求和住宅区、商业区和轻工业环境的发射要求;对于电源这种通用类产品,在设计初期电磁干扰定位除非是特别的型号,否则都会按照IEC/EN61000-6-3或者IEC/EN61000-6-4执行设计。


随着电源的体积不断的小型化,功率密度不断的增加,对于电源本身的电磁干扰设计难度不断的加大,MORNSUN目前市场上所有的AC-DC不仅内置了滤波器,同时在变压器屏蔽方面、功率器件噪声吸收方面都投入了大量的设计成本,满足承诺的指标要求;R2代小功率DC-DC产品全部采用六面屏蔽结构进行设计,满足行业EN55022/CISPR22、EN55011/CISPR11的CLASSA要求,符合基础性行业的等级要求。


虽然电源自身电磁干扰方面投入了很大的设计成本,也符合承诺的各项指标要求,但是电源在市场应用方面还是难免出现电磁干扰超标的问题;此时,很多的设计工程师都会认为问题的根源在于电源,这方面的认识其实是有误区的,因为电磁干扰传导骚扰测试项目,主要是针对电源端口的,那么电源端口就成了他的传输路迳,所有的电磁干扰都会经过电源端口到达被测设备。


但是测试设备测试到的电磁干扰除了来自电源本身外,主要的部分还包括整机中的其他部分产生的电磁干扰,以及设备内部寄生参数的谐振产生的电磁干扰,这一类电磁干扰会通过电源端口耦合到测试设备,电源内部的滤波器是无法进行实现对这部分电磁干扰进行滤波,电源应用环境千差万别,所有电源设计滤波器部分都是以解决自身的干扰为首要考虑条件的同时,滤波器衰减特性及频谱特性尽量会预留最大的余量,但不可能兼容所有应用场合;那么这就要求我们的整机设计人员在设计电源前端时候,一定要按照电源厂家推荐的应用电路进行设计,例如:LH15产品应用过程中出现EMI超标问题(见下图)。


下图为MORNSUN电源LH15-10B05传导骚扰测试结果,此结果符合EN55022/CISPR22的CLASSB要求,而且余量非常充分。


下图为MORNSUN电源LH15-10B05的电源应用到某品牌产品上面后,整机测试传导骚扰结果,此结果无法符合EN55022/CISPR22的CLASSB要求,甚至连CLASSA都无法满足要求,更不用说设计余量。


所以电源即使内部电磁干扰设计等级再高,在应用过程中一定要留应用部分,具体参数可参考具体产品对应的规格书。MORNSUN的电源产品在规格书中都会有应用电路这一栏,会将在应用电路的基础上实现的指标,描述的非常详细。


2电磁抗扰度:


电源除了要符合上面提到电磁干扰要求外,还必须符合对应应用环境的抗扰度要求,如果无法满足此环境的最低要求,那么就会受到周围其他设备产生的电磁干扰的影响,产生损坏、输出不稳定等异常现象,最终影响整机的正常工作。


对于电源这种通用类产品,并没有具体的标准要求抗扰度性能达到一定的等级,在应用到具体的行业时候参考行业的标准;但是在设计初期,并没有定位具体的行业,只能参考通用类标准IEC/EN61000-6的具体要求,标准IEC/EN61000-6-1/2分为工业环境设备抗扰度要求和住宅区、商业区和轻工业环境的抗扰度要求。MORNSUN电源AC-DC部分都是按照工业类型产品最严格的等级在进行设计,同时保证了设计的余量非常充分,目前此类型电源承诺四级指标2KV(差摸)/4KV(共模)的防护能力的产品,内部设计的端口防护压敏电阻都用的是14D的规格(见下图)


通过下表可以明显看出14D的规格持续通流量可以达到4.5KA,那么承诺的指标只有1KA(差摸)/333KA(共模),通过这个对比可以看出,设计的降额已经非常大,但是产品长期在市场方面使用过程中,还会出现压敏电阻损坏,最终导致电源烧毁的现象,究其原因主要有两方面因素:一方面是由于压敏电阻自身的老化原因产生的,目前市场上面非常常用的ZnO压敏电阻,中间是ZnO颗粒构成的绝缘层,两面通过镀银形成电极,当两面电极的电压超他的阀值电压时候,漏电流会急剧增大,最终形成瞬态电流泄放,起到防护的作用。


压敏电阻对于瞬态浪涌脉冲进行电流泄放,多次泄放以后压敏电阻的介质ZnO会发生特性变化,这样压敏电阻的残压特性、泄放能力都会大大降低;更加严重的是压敏电阻这种两面镀银结构,表面镀银并无法实现100%均匀,那就说明每次瞬态浪涌冲击,必然会存在整个压敏电阻的表面有某个点最先导通,最先击穿导通的点在承受多次冲击之后,后首先烧毁,最终导致压敏电阻损坏(见下图)。


这种压敏电阻通过击穿点进行电流泄放,在泄流点会形成大量的热量,这种热量最终会导致压敏电阻烧穿(见下图)。


另外一方面损坏因素是由于终端客户对于电源使用不当引起的失效,使用不当前面已经描述过会引起电磁干扰的超标,同样电磁抗扰度也会受到严重的影响,客户应用现场千差万别,那么其中对MORNSUN隔离AC-DC小功率电源模块的非隔离引用(见下图),就会导致电源的损坏,即使电源在这种瞬态浪涌冲击中侥幸正常,那么后端的负载部分也会产生各种各样的异常现象,这是整机设计工程师非常头痛的问题。


隔离电源的非隔离应用会产生什么样的问题:一是当进行共模浪涌试验时候,共模线-地之间的浪涌冲击就会变成隔离电源模块原副边之间的耐压,对于各种工业、电力、轨道交通等对于产品可靠性要求非常苛刻的应用环境,线-地之间会按照4KV的浪涌等级进行试验,大多数行业对于电源的隔离度都是按照3KV的要求或者更低进行设计,这样电源模块就难逃损坏,只有医疗等特殊行业的隔离度才会设计在4KV,但是此时的隔离电源需要牺牲体积、成本等。


第二个问题是当输入端存在瞬态脉冲等各种杂波干扰信号时候,隔离电源能够起到很好的保护后端负载作用,但是非隔离应用之后,输入端的所有干扰信号都会原封不动的传输到负载端,会到导致整个系统产生异常甚至瘫痪。


上面这则应用经常会受到各种质疑,一般会以某国际知名品牌的整机设计为例,告诉我们市场上面很多这种应用,当然这种确实是存在。那么这种应用在什么情况下不会产生异常呢?对于电力系统非常发达的地域,他的电网已经可靠,同时电网的负载的电磁干扰已经非常理想的情况下,是没有问题的;另外这种应用可能会在负载端已经投入了大量的设计成本来避免输入端的瞬态干扰的时候,非隔离应用也不会有异常;


那么,如果隔离电源在应用过程中一定要进行输出Vout-连接到PE端,可以按照上图的连接思路,通过电容将这两个端子进行连接,这样设计保证了客户特殊使用要求的同事,对于上述问题也能够有效的规避。


总之,从可靠性的角度来说明,这种设计是非常不提倡的。


3结语:


整机电磁兼容的设计其实是一个系统性的工程,需要我们在设计初期就对指标定位、应用环境评审充分,在设计过程对于电路图设计、原材料选型、PCB绘制、结构设计、工艺安装等各方面评审充分;任何一个点设计不到位都可能导致设计失败,甚至会付出沉重的成本代价。目前行业内对于这方面的设计失败局限于电源方面,还有待继续梳理和提高。


相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号