基于UCC28600准谐振反激式开关电源的方法

2020-05-19      1180 次浏览

本文提出了一种基于UCC28600控制器的准谐振反激式开关电源的设计方法,该方法分析了准谐振反激式开关电源的工作原理及实现方式,给出了电路及参数设计和选择过程,以及实际工作开关波形。实验证明,该方法中所设计的准谐振反激式开关电源具有输入电压范围宽、转换效率高、低EMI、工作稳定可靠的特点。准谐振技术降低了MOSFET的开关损耗,提高产品可靠性。


引言


准谐振转换是十分成熟的技术,广泛用于消费产品的电源设计中。新型的绿色电源系列控制器实现低至150mW的典型超低待机功耗。本文将阐述准谐振反激式转换器是如何提高电源效率以及如何用UCC28600设计准谐振电源。


常规的硬开关反激电路


图1所示为常规的硬开关反激式转换器电路。这种不持续模式反激式转换器(DCM)一个工作周期分为三个工作区间:(t0~t1)为变压器向负载供应能量阶段,此时输出二极管导通,变压器初级的电流通过Np:Ns的耦合流向输出负载,逐渐减小。


图1


MOSFET电压由三部分叠加而成:输入直流电压VDC、输出反射电压VFB、漏感电压VLK.到t1时刻,输出二极管电流减小到0,此时变压器的初级电感和和寄生电容构成一个弱阻尼的谐振电路,周期为2πLC。在停滞区间(t1~t2),寄生电容上的电压会随振荡而变化,但始终具有相当大的数值。当下一个周期t2节点,MOSFET导通时间开始时,寄生电容(COSS和CW)上电荷会通过MOSFET放电,出现很大的电流尖峰。由于这个电流出现时MOSFET存在一个很大的电压,该电流尖峰因此会做成开关损耗。此外,电流尖峰含有大量的谐波含量,从而出现EMI。


准谐振反激式设计的实现


利用检测电路来有效地“感测”MOSFET漏源电压(VDS)的第一个最小值或谷值,并仅在这时启动MOS-FET导通时间,由于寄生电容被充电到最低电压,导通的电流尖峰将会最小化。这情况常被称为谷值开关(ValleySwitching)或准谐振开关。这种电源是由输入电压/负载条件决定的可变频率系统。换言之,调节是通过改变电源的工作频率来进行,不管当时负载或输入电压是多少,MOSFET始终保持在谷底的时候导通。这类型的工作介于持续(CCM)和不持续条件模式(DCM)之间。因此,以这种模式工作的转换器被称作在临界电流模式(CRM)下工作。临界模式下MOSFET漏源电压如图2所示。


图2


在反激式电源设计中采用准谐振开关方法有着许多优点:


(1)降低导通损耗


由于MOSFET导通具有最小的漏源电压,故可以减小导通电流尖峰。减轻了MOSFET的压力,降低器件的温度。


(2)降低输出二极管反向恢复损耗


由于二次侧的整流管零电流关断,反向恢复损耗降低,从而提高电源整体效率。


(3)减少EMI


导通电流尖峰的减小以及在准谐振过程中存在频率抖动,将会减小EMI噪声,这就减少EMI滤波器的使用数量,从而降低电源成本。基于UCC28600控制器的钨灯电源的设计


1、UCC28600控制器的重要特性


UCC28600控制器的重要特性有先进的绿色模式控制方式;低EMI及低损耗(谷底开关)的准谐振控制方式;空载损耗小于150mW(低待机电流);低启动电流(最大25μA);;可编程过压保护(输入电压和输出电压);内置过温保护,温度回复后可自动重启;限流保护:逐周期限功率,过电流打嗝式重启;可编程软启动;;集成绿色状态脚(pFC使能端)。


2、UCC28600工作原理


UCC28600内部集成了UVLO比较器,高频振荡器,准谐振控制器和软起动控制器,待机模式跳脉冲比较器,输入和输出过电压保护。其内部结构图如图3所示。


图3


(1)UVLO比较器


UCC28600的VDD电压在13V起动,在低于8V时关闭,有5V的滞差电压,可以提高UCC28600工作的稳定性。


(2)内部振荡器


UCC28600内部集成了一个40~130kHz的振荡器。


(3)准谐振控制器和软起动控制器


UCC28600采用准谐振的开关变换器以提高转换效率,利用变压器的励磁磁通,在开关关断期间,检测变压器绕组的输出电压,假如电压偏低及处于振荡的波谷时,可以确认该时刻变压器励磁磁通耗尽,可以开启下一周期。该准谐振模式可分为临界导通模式(CRM)和不持续导通模式(DCM)以及频率调制模式(FFM)。


(4)待机模式和跳脉冲比较器


当功率继续减小,UCC28600进入待机模式;频率调制模式(FFM)频率下降到40kHz,不再减小;当FB小于0.6V时,开关脉冲输出关断,当FB大于0.7V时,开关脉冲正常输出,从而得到跳脉冲模式的待机工作状态。


(5)输入和输出过电压保护


OVp引脚为过电压(线电压和负载电压)输入脚以及谐振开通的响应脚,此脚通过变压器初级偏置线圈来侦测输入过压,负载过压及谐振条件,其过压点可通过与此脚相连的电阻来灵活调节。


3、钨灯电源的技术指标


输入电压:95~260VAC50/60Hz;输出电压:5V;输出电流:4.3A;可遥控关闭电源输出。


4、电源设计过程


钨灯电源电路图如图4所示,交流电源从左上角输入,经输入电源滤波器、整流桥、高压电容,转为约130~360V的直流高压。N14、V30组成高压侧主电路,将直流高压斩波为脉冲电压,通过变压器耦合,经V12整流输出,输出电容滤波为直流电压。


图4


3.4.1、启动电路


由于UCC28600的启动电流非常小,典型值为12μA,可以大大降低启动电阻的功耗,因而启动电阻由三个300kΩ的贴片电阻串联而成。但由于VDD引脚要一个足够的储能电容防止在工作时出现打嗝现象,带来的一个问题是VDD启动时电压上升过慢,电源启动时间过长。解决方法是VDD引脚采用小电容,反供绕组采用大电容,两者之间用V34(1N4148)隔离。


3.4.2、遥控电路


遥控电路用光耦TLp181安全隔离,当遥控信号输入CTL端加电流信号时,光耦输出端导通,通过V33将UCC28600的SS引脚拉低,关闭MOSFET的驱动信号;通过R32将VDD电压拉低,低于UCC28600的启动电压,防止芯片一直处于重启过程。


3.4.3、反馈电路


采用TL431采样输出端电压,通过光耦TLp181隔离后反馈到芯片的输入端。TL431的基准电压为2.495V,通过R84、R85的分压,将输出电压设定在11.5V.由于负载为固定钨灯电源,所以不用考虑电源的瞬态相应,故TL431的补偿电容采用简单的Ⅰ类补偿,电路简单,稳定可靠。


3.4.4、变压器设计


设在最大负载时,UCC28600工作在准谐振模式,其最大占空比发生在最低输入电压时,在固定输入电压和输入功率的情况下:



初级绕组采用2×0.35漆包线,次级采用125μm铜箔,采用三明治绕法,磁芯中心柱开气隙,使ALG为275nH/T2。5、测试数据


3.5.1、电源转换效率


电源在不同输入输出条件下效率如图5所示。


图5


3.5.2、不同状态下的开关管波形


电源在不同状态下的开关管波形如图6所示。


由图6可以看出,当输出负载很小时,电源是工作于跳脉冲模式,这样可以降低开关损耗,提高轻载电源效率;随着负载加大,电源开始进入频率调制工作模式。在满载且输入电压较高时,电源工作于频率较高的准谐振模式;假如输入电压较低时,工作模式不变,但开关频率降低,维持开关管在波形谷底导通。


图6


结语


本文提出的基于UCC28600控制器的准谐振反激式开关电源的设计方法,该方法利用准谐振技术降低了MOSFET的开关损耗。实践证明,基于UCC28600的准谐振反激式开关电源的设计具有输入电压范围宽、输出电压精度高、高转换效率、低待机功耗等特点。本电源应用于钨灯电源中,最高效率达到86%,收到了良好效果。


相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号