1.直流电镀电源的发展回顾
电镀是电能转化为化学能的过程,在这一过程中,金属离子获得电子被还原成金属原子,金属原子按一定规则排列形成晶体成为镀层。直流电镀电源正是供应电子的“源泉”和使金属原子结晶的动力。因此电源在电镀过程中的用途是十分重要的。
高频开关电源
上世纪60年代中期以前,人们采用交流——直流发电机组为电镀供应直流电。在调节直流发电机的输出时,要把直流发电机的输出作为采样信号,调节交流电机的转速以改变直流输出,即所谓“交—直—交组”。这种系统由于具有较高的可靠性,曾一度在电镀领域占统治地位(与之同期的还有贡弧整流器,但较早被淘汰。)至今人们仍可在某些国内大厂中看到它们的影子。然而这种系统效率极低,因此在电力电子技术诞生后不久便退出了历史舞台。我们把以交一直发电机组为代表的直流供电系统称之为第一代直流电镀电源。
在电力电子学还未从电工技术中分化出来之前,大功率硅整流管已被大量地工业化使用,于是,在电镀领域出现了所谓“自耦+硅整流”式直流电镀电源,即使用自耦变压器调节交流电压,再以大功率硅管(堆)进行整流。该系统虽然在技术上比起“交—直流发电机组”有了一定的进步,但由于在控制上要用电机或人力去拖动自耦变压器的调压端,很不方便。同时,其效率没有任何改善,精密、纹波也较差。这即是所谓的第二代直流电镀电源。
50年代中后期,晶闸管在美国的贝尔实验室诞生。从而给包括电镀电源在内的电力电子行业带来革命性的福音。以可控硅为核心的直流电镀电源便是在这样的背景下出现的。
可控硅电镀电源,在电路结构上重要有两种形式:一是利用可控硅在工频变压器原边进行调压,然后在副边用硅管多相整流;二是直接用可控硅在工频变压器的副边进行调压整流。不论哪种形式,都把成熟的调节控制原理通过电子电路,运用到对可控硅导通角的控制中,使得可控硅电镀电源的输出特性大大地优于以往的产品。在额定负载情况下,往往能获得令人满意的精度、纹波和效率,特别是在效率上,比过去的产品有了显著的提高,功率范围也很宽。这些优良的特性使得它一经出现,便成为直流电镀电源的主流。至今国内大量使用的仍以这种电源为主,国外工业化国家在大功率电源领域也在使用这种电源。我们称之为第三代直流电镀电源。
第三代电镀产品比以往的产品有着明显的优势,但随着人们对镀层质量和工业生产过程自动化以及近十几年来人类对工业生产领域的节约能耗,减小污染的要求的不断提高,可控硅电源的缺点越来越明显。首先,它只能在一定的负载范围内保证额定精度,而实际生产时,大多数情况是非额定的,因此,往往难以满足实际精度要。纹波也是如此,只在一定范围(一般是在满负载附近)满足额定值,这些,都给人们利用它来进一步提高工艺质量带来困难。其次,由于采用模拟电子线路完成移相控制,当它与计算机控制系统联接时,要的接口电路较繁琐,很不方便。另外,由于摆脱不了工频变压器,使其整机体积大,重量大,耗费铜材,而且对电网的谐波干扰也很严重。随着电力电子技术的发展,高频功率变换技术得到了越来越广泛的应用。第四代直流电镀电源——高频开关电源正是在这样的背景下应运而生的。
2.高频开关电源工作原理概述
高频开关电源的工作原理是功率变换。当开关S闭合时,电流流过电感L,在负载RL两端出现输出电压。由于输入电压的极性关系,二级管VD1处于反向配置,此时L储存能量。当开关S打开时,电感L的磁场极性发生变化,储存在L中的能量通过负载RL释放,二极管VD1正向导通,负载两端的电压极性仍保持不变。二级管VD1因其在电路中的用途而被称为续流二极管。当开关S闭合时,输入回路有电流输入,而当开关打开时,则电流突然终止。但由于电感L和续流二级管VD1的用途,输出电流是持续的。电感L和电容C同时还起到滤波的用途,从而使RL上的电压更加平滑。在实际应用中,起到开关使用的是开关晶体管。同时在图—1的电路中,输入和输出回路之间缺少安全隔离措施,因而一般采用高频变压器作为隔离器件。VT1是一开关晶体管,其基极用一方波S1控制。S1为高电平时,VT1导通,在变压器T的初级出现电源,并储存了能量。由于变压器的次级与初级同相,所有数量也传递到了变压器次级。电流流过正向偏置的二级管VD2和电感L,能量传递给负载RL,同时电感L中储存了能力。此时二极管VD1处于反向偏置。当S1为低电平时,VT1截止,变压器T绕组中的电压反向,二极管VD2截止,续流二极管VD1导通,存储在电感L中的能量继续传递给负载RL。显然,输出电压VRL=V2×Ton/T=V2×X其中X=Ton/T为占空比;Ton为VT1的导通时间,改变脉冲占空比δ,即可改变输出电压(或电流)。由此可以看出,开关电源是一种功率转换装置。以上简单介绍了高频开关电源的工作原理、读者不难看出它是集功率转移技术与脉宽调制技术于“—体的高技术产物,是当代电力电子学理论发展的最新体现。一经问世,即受到广泛关注并得到空前迅速的发展。在国际上,高频开关电源已在直流电源领域无可争议地居于首要地位。在国内,以北京浩源电源设备有限公司为代表的HY系列高频开关电源也异军突起,以优异的性能、可靠的品质和完善的服务与各种国际名牌共舞于市场经济的舞台。电网供电经EMI滤波后。再经硅桥整流和滤波电路滤波,成为直流电。这里,滤波电路只用一个电路C1代表。辅助电源将交流电通过整流滤波后,变成低压的直流电,并给控制电路供电。功率MOS管V1和V2作为开关元件。控制电路出现一固定频率的脉冲宽度可调的方波(pWM)。该方波控制V1和V2的导通与关断。
3.高频开关电源与可控硅电源的比较
作为第四代直流电镀电源,高频开关电源较之可控硅电源有着许多无可比拟的优势,这里笔者借助几张表格将其作一简单比较。
3.1电路结构的比较可控硅电源高频开关电源工频变压器有无被控制器件可控硅场效应管控制方式移相触发脉宽调制输入滤波有有输出滤波无/有有
3.2功率因数比较Cos控制角可控硅整流器高频开关电源不加校正加校正0°1.0全量程0.70全量程0.90~0.9530°0.9560°0.8990°0.70120°0.42150°0.17180°0
3.3输出纹波比较输出电压脉冲系数=整流电压基波最大值/整流电压的直流分量可控硅电源的输出脉动较大,并且随负载的大小和整流相数的变化而变化。它的工作频率低,在大电流时往往不加滤波电路。高频开关电源的输出脉冲较小。由于输出脉冲的频率很高,所以低通滤波器的体积大幅度减小,这样就十分有利于提高电源的输出纹波特性。有关这两种电源脉动系数的比较见下表:可控硅电源高频开关电源相数mym%相数mym%2相66.7单相1.03相25.06相5.73相1.012相1.40
3.4效率比较可控硅电源中的工频变压器的转换效率通常为85%再加上整流部分的各种损耗,使其在最理想状态下效率也只能在75%左右。高频开关电源的效率随着电路的不同而略有文化,一般在80%~90%左右。假如采用先进的谐振型开关电路,则其效率会更高
3.5精密比较可控硅电源在控制角很大时,调整能力很差,输出电压、电流的精度在半载到满载时的理想情况下,方可达到3%~5%。而且电压、电流的线性不好,这是由于可控硅电源本身电路的体制造成的。高频开关电源在全量程范围内精度均可达到1%以上。甚至可以达到0.1%。
3.6总的比较与结构性能分类体积重量效率功率因数精度控制电路工作频率保护功率带载启停对电网干扰节能节材可控硅整流器较大笨重75%左右0~1可变半载到满载范围3%复杂、有同步要求,不宜集成低50~600Hz继电器时间长100ms,快速熔断器10ms大不允许大,频率低不利于消除效果差高频开关电源小,只有同功率可控硅整流器的1/3~1/5轻,只有同功率可控硅整流器的1/485%左右(1)不加校正全范围0.7(2)加校正全范围可达0.9以上全范围内小于%或更高简单,有专用集成控制器高,一般20KHZ~200KHZ或更高快速,1ms且有自恢复功能小允许较小,频率高易消除消除明显
4.发展前景
高频开关电源作为新一代产品,已经在中小功率方面形成规模产品,其市场覆盖率日益扩大。大功率方面,高频开关电源还受到一定的限制。但这并不意味着高频开关电源没有进入大功率范围的可能,相反,这很可能是它的发展方向。虽然高频开关电源单机容量目前还受到器件、材料的限制,但是,随着电源并联技术的提高,电子器件的发展,多组并联的大功率高频开关电源已不是梦想。在这方面,北京浩源电源设备有限公司做了十分有益的尝试,据了解,该公司已经可以生产七万二千瓦的高频开关电源。随着科学技术的发展,单机大的功率高频开关电源一定会在不远的将来进入市场,走近我们。