开关电源在模拟量采集系统中的应用

2020-05-14      1524 次浏览

尽管在模拟量采集系统中,对ADC芯片等的供电一般建议最好不用开关电源,以防止其固有的纹波大、噪声等问题,但开关电源仍以其高效率、低价格等优点得到广泛应用,尤其是在工业控制等领域。本文介绍开关电源在模拟量采集系统中的应用,并对可能出现的一些问题进行分析。


开关电源对ADC芯片工作的影响及解决方法


电源对ADC芯片的影响,除了体现在电源抑制比(pSRR)参数上,还表现在,当ADC芯片对输入的模拟信号进行采样、保持、转换时,电源电压、参考地的变化,都会对ADC芯片内部采样电路、比较器等的工作出现影响,使得采集结果出现晃动。因此,一般ADC芯片特别是高精度ADC芯片,都建议最好用质量好的线性电源供电。假如采用开关电源,则要尽力防止它对ADC芯片出现影响。


图1是一个典型的应用,其中模拟采样用的信号调理电路、ADC和现场模拟信号不隔离,ADC芯片和CpU电源相互隔离。CpU采用控制系统内部电源。而ADC的+5V电源是由+24V电源经过+24V到+5V电源变换而来的。图中左侧部分是典型的串联、降压非隔离型DC-DC变换器的原理框图。设计中,可以根据开关管的开关频率、+5V消耗电流、要求的输出纹波最大值,计算出电感L1、电容C1的合适大小。


为了分析出开关电源对ADC芯片的影响,这里假设信号调理电路及ADC芯片正常运行的耗电是25mA/+5V,关于光耦部分,假如采用6N136、TLp521等三极管输出型的光耦,则当CpU不启动ADC工作时,光耦全不导通,耗电小于1mA;当CpU启动ADC工作时,将有数据输出Dout、数据准备好Ready等信号经过光耦,光耦处于导通状态,为了达到比较高的通讯速率,光耦总耗电要25mA/+5V左右。这样,+5V负载电流将在25~50mA之间来回变动。正常开关电源设计的输出电流应该2倍于最大负载电流,这里设为100mA,下面将要说明负载电流的变化将极大影响+5V,从而影响ADC采样稳定性。


开关电源的工作原理是,平时Q1的周期性开关动作,再经过L1、C1,得到所要的输出;而当输出+5V电压发生上升/下降超过一定限度(如几十毫伏),经过采样、反馈后,开关控制电路控制Q1的开关,使得输出电压向+5V回归。在+5V负载比较恒定的情况下,输出+5V的最大纹波,可以根据采样反馈电路工作原理(比如MC34063是通过比较器和锁存器来控制Q1的开关)、开关频率等计算出来。


但假如是图1中带光耦的情况,开关电源的输出不仅供给相对恒定的负载(如信号调理电路、ADC芯片),而且还要供给光耦等数字部分电路,有可能发生最坏的情况是,当开关管Q1正处于上述稳定工作中的关断时刻,光耦突然被ADC导通,此时L1、C1将要供应50mA的负载电流,而平时稳定工作中L1只供应25mA的电流,剩下电流只能从电容C1中获取,使得C1上的电压即+5V电平下降比较大。这将持续半个开关周期,直到开关管Q1打开。假如开关电源的开关频率是100KHz,而ADC芯片数据Dout的通讯频率也是100KHz左右,将引起输出+5V电压频繁波动,造成更大的输出纹波。在示波器上甚至能看到噪声反馈在+24V输入上。


上面只是理论分析的最坏情况,实际应用中,滤波电容等器件的非理想性、pCB布线等等,将使得电源纹波更大,ADC采样结果不稳定。有的微功率型隔离DC/DC,或者如电荷泵器件,只有开关管的周期性开关动作,而没有上述采样、反馈电路,输出更容易受到负载不稳定的影响,使得ADC采样结果更不稳定。


图1:开关电源在模拟量采集系统中的典型应用图


比较好的解决办法


1.设法降低开关电源的负载变化,因为虽然目前开关电源的工作频率已至几百kHz以上,但开关电源的负载响应时间仍至少要几个μs,低于目前大多ADC采样的速度。比如采用光耦6N137就比6N136好,因为6N137只是静态电流比较大,而它要的二极管导通电流小,使得电源的负载变化不会很大。或者不把模拟+5V电源接到小功率的开关电源输出上,而接到其它功率比较大的开关电源输出上,防止开关电源输出受到负载变动的影响。同样一个值得注意的问题是,不要使用ADC芯片的Ready、Dout、Din等引脚直接驱动光耦,最好通过光耦驱动电路,使得模拟和数字电源得到很好地相互隔离,防止在光耦开关时,有大的电流越过ADC芯片。


2.开关电源后加LDO等输出电压纹波小的器件,再供给信号调理电路、ADC芯片,保证模拟电路电源的稳定。


3.假如在开关电源后加LC滤波,将LC滤波后的电源供给数字部分,此时应该针对不同的负载电流大小,选择相应的L、C数值,必要的时候,要通过一定的计算、仿真及试验来加以确定。电感、电容不能过大,否则难以响应负载(光耦开/关)的变化。建议开关电源输出直接供给数字部分;同时经过LC滤波或者RC滤波,再供给信号调理电路、ADC芯片。在采用LC滤波时,还要注意LC的谐振频率要远远偏离开关电源工作频率。比如滤波RC电路的电阻R可以取10Ω左右,电容取10μF左右。


4.其它常规的方法也特别重要,如信号调理电路、ADC芯片的电源和地,要同光耦等数字部分的电源和地分开走线,最后单点连接。或者两者采用两个DC/DC电路分别给ADC芯片等模拟电路和光耦等数字电路供电。原因和上文分析相同,也是为了更好的防止数字、模拟之间电源的相互干扰。


开关电源对运算放大器的影响及解决方法


一般模拟量信号进入ADC芯片之前,要利用运算放大器进行信号调理,以供应必要的电平变换、滤波、ADC芯片驱动等等。运算放大器与ADC相接口时,容易受到电源的影响,从而也影响ADC芯片采集的稳定。图2是运算放大器与ADC的典型接口图。


图2:运算放大器与ADC的典型接口图


大多ADC芯片内部的模拟输入端都具有一个采样电容Cin,电阻R1对运放输出限流,数倍于采样电容的陶瓷电容C1使得开关SW合上的瞬间,通过C1迅速给采样电容Cin充电。R1、C1的具体数值,与运放的稳定性、建立时间、ADC采样时间、要的采样精度有关。


这里要指出的是,在上述过程中,运放的电源也会起很大的用途。在运放对电容充电期间,瞬间要较大的电流,而开关电源的负载响应时间不够,将造成比较大的电源纹波,影响运放的输出。比如采用C1=10Cin=250pF,则当SW从别的通道(假设为-5V)切到AI0通道(假设+5V)时,Cin从-5V切换到C1上的电压+5V,C1迅速给Cin充电,最终电压为(5V×10-5V)/11=4.09V,运放输出要从5V变到4.09V,R1太小容易带来运放输出稳定性问题,同时也会对运放输出电流带来冲击,影响电源电压。


特别是在采用电荷泵给运放-VCC供应小的负电源时,电荷泵输出电压随负载增大而降低的特性使得效果更加明显。比较发现,运放采用直流线性稳压电源时,12位的ADC采集结果很稳定,结果变动可达1LSB以下;相比之下,采用电荷泵器件时,假如电荷泵输出没有大的滤波,ADC采集结果晃动可达3LSB。假如增大R1为100Ω时,C1=10Cin,不考虑运放输出电阻时,要运放输出电流的最大值为(5-4.09)V/100Ω=9.1mA),小于一般运放的最大输出电流。但R1太大,将明显降低ADC所能采集到的信号频率,在ADC对该通道“跟踪”期间,运放无法完成对C1和Cin充电,使得该次采样与运放输入端电压相差较大,会造成谐波失真。


解决办法除了前文描述的以外,同时还可以采用以下方法:


1.运放的正负电源对地除并接一个10~22μF大电容以减少电源纹波外,再并接一个0.1~1μF的小陶瓷电容,以通过0.1~1μF高频去耦电容的用途,防止负载电容的瞬间充电对电源的影响。效果类似于数字芯片电源和地之间加的去耦电容。


2.增大图2中ADC前端电阻R1,减小运放的输出电流,能起到一定的滤波用途。当然R1大的话,将衰减通过运放的信号。


开关电源对参考源的影响及解决方法


有的ADC芯片要外部供应参考源,这时外部参考源的供电,也要参照前文所述的处理方法,采取在输入端加滤波等措施。同时注意,对持续逼近(SAR)型ADC芯片,如TLC2543芯片,采样、保持后的内部每次电压转换,都要将采集电压和参考源的1/2、1/4、1/8等组合相比较,以确定相应n位ADC结果的第(n-1)位、第(n-2)位等,参考源的分压是通过电容实现的。


这样,对应转换每位均要将参考源VREF通过开关接到相应分压电容上,对参考源而言,将看到一个变化的容性负载,从而出现了上文所说的问题。假如ADC芯片内部没有参考源缓冲电路,而外部参考源的容性负载能力又不够时,要在外部参考源输出端,串一个缓冲器,再通过一个RC电路接到ADC芯片的参考源输入端。其它处理方法,同上文所述,如在外部参考源的电源端,并接一个10~22μF大电容和一个0.1~1μF的小陶瓷电容等。


本文小结


本文虽然针对SAR型ADC进行分析、处理,但其应用原理,对各种ADC都有参考价值。仔细分析各个环节的工作原理,采取一定的对策,就能在模拟量采集系统中,使用廉价的开关电源,而又获得极佳的采集性能。


相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号