摘要
锂离子(Li-Ion)电池是电动汽车和混合动力汽车的常用储能方法。这些电池可供应的能量密度在所有现有电池技术中是非常高的,但是假如要最大限度地提升性能,必须使用电池监控系统(BMS)。先进的BMS不仅使您能够从电池组中提取大量的电荷,而且还可以以更安全的方式管理充电和放电循环,从而延长使用寿命。ADI公司供应种类齐全的BMS器件组合,专注于精度和稳健的运行。
精确测量电池的充电状态(SOC)可以延长电池运行时间或减轻重量。精密稳定的器件在pCB装配后无需厂校准。长期稳定性提高了安全性并可防止保修问题。自我诊断功能有助于达到合适的汽车安全完整性等级(ASIL)。电池组是充满电磁干扰(EMI)挑战的环境,因此在设计数据通信链路时要进行特别处理,以确保测量芯片与系统控制器之间稳健可靠的通信。电缆和连接器是造成电池系统故障的重要原因,因此本文介绍了无线解决方法。无线通信设计提高了可靠性并减轻了系统总重量,进而新增了每次充电的行驶里程。
简介
储能单元必须能够供应大容量,并且能以可控方式释放能量。假如不能进行适当的控制,能量的存储和释放会导致电池灾难性故障,并最终引起火灾。电池可能会由于多种原因而发生故障,其中大多数与不当使用有关。故障可能来自机械应力或损坏,以及以深度放电、过度充电、过电流和热过应力等形式表现出的电气过载。为了尽可能提高效率和安全性,电池监控系统必不可少。
BMS的重要功能是通过监控以下物理量使电池组中所有单节电池保持在其安全工作区域(SOA)中:电池组充电和放电电流、单节电池电压以及电池组温度。基于这些数值,不仅可以使电池安全运行,而且可以进行SOC和健康状态(SOH)计算。
BMS供应的另一个重要功能是电池平衡。在电池组中,可以将单节电池并联或串联放置,以达到所需的容量和工作电压(高达1kV或更高)。电池制造商试图为电池组供应相同的电池,但这在物理上并不现实。即使很小的差异也会导致不同的充电或放电电平,而电池组中最弱的电池会严重影响电池组的整体性能。精确的电池平衡是BMS的一项重要功能,它可确保电池系统以其最大容量安全运行。
BMS架构
电动汽车电池由几节电池串联组成。一个典型的电池组(具有96节串联电池)以4.2V充电时会出现超过400V的总电压。电池组中的电池节数越多,所达到的电压就越高。所有电池的充电和放电电流都相同,但是必须对每节电池上的电压进行监控。为了容纳高功率汽车系统所需的大量电池,通常将多节电池分成几个模块,并分置于车辆的整个可用空间内。典型模块拥有10到24节电池,可以采用不同配置进行装配以适合多个车辆平台。模块化设计可作为大型电池组的基础。它允许将电池组分置于更大的区域,从而更加有效地利用空间。
ADI公司开发了一系列电池监控器,能够测量多达18节串联连接的电池。AD7284可以测量8节电池,LTC6811可以测量12节电池,LTC6813则可以测量18节电池。图1显示了一个典型的具有96节电池的电池组,分为8个模块,每个模块12个电池单元。在本示例中,电池监控器IC为可测量12节电池的LTC6811。该IC具有0V至5V的电池测量范围,适合大多数电池化学应用。可将多个器件串联,以便同时监测很长的高压电池组。该器件包括每节电池的被动平衡。数据在隔离栅两边进行交换并由系统控制器编译,该控制器负责计算SOC、控制电池平衡、检查SOH,并使整个系统保持在安全限制内。
图1.采用LTC681112通道测量IC、具有96节电池的电池组架构。
为了在电动汽车/混合动力汽车的高EMI环境中支持分布式模块化拓扑,稳键的通信系统必不可少。隔离CAN总线和ADI的isoSpI™都供应了经过验证的解决方法,适合在这种环境中进行模块互联。1尽管CAN总线为在汽车应用中互联电池模块供应了完善的网络,但它要许多附加元件。例如,通过LTC6811的isoSpI接口实现隔离CAN总线要新增一个CAN收发器、一个微处理器和一个隔离器。CAN总线的重要缺点是这些额外元件会新增成本和电路板空间。图2显示了基于CAN的一种可行架构。在这个示例中,所有模块都并联连接。
ADI创新的双线式isoSpI接口是CAN总线接口的替代方法。1isoSpI接口集成在每个LTC6811中,使用一个简单的变压器和一根简单的双绞线,而非CAN总线所需的四线。isoSpI接口供应了一个抗噪接口(用于高电平RF信号),利用该接口可以将模块通过长电缆以菊花链形式连接,并以高达1Mbps的数据速率运行。图3显示了基于isoSpI并使用CAN模块作为网关的架构。
图2和图3所示的两种架构各有利弊。CAN模块是标准化模块,可以与其他CAN子系统共享同一总线运行;isoSpI接口是专有接口,只能与相同类型的器件进行通信。另一方面,isoSpI模块不要额外的收发器和MCU来处理软件堆栈,从而使解决方法更紧凑、更易于使用。两种架构都要有线连接,这在现代BMS中具有明显的缺点,因为在布线中,导线走线至不同的模块会成为一个棘手的问题,同时又新增了重量和复杂性。导线也很容易吸收噪声,从而要进行额外的滤波。
无线BMS
无线BMS是一种新颖的架构,它消除了通信布线。1在无线BMS中,每个模块的互联都通过无线连接方式实现。大型多节电池的电池组无线连接的优势是:
连线复杂度更低
重量更轻
Lowercost
成本更低
安全性和可靠性更高
由于恶劣的EMI环境以及RF屏蔽金属构成的信号传播障碍,无线通信成为一个难题。
ADI的SmartMesh®嵌入式无线网络在工业物联网(IoT)应用中经过了现场验证,可通过运用路径和频率分集来实现冗余,从而在工业、汽车和其他恶劣环境中供应可靠性超过99.999%的连接。
除了通过创建多个冗余连接点来改善可靠性之外,无线Mesh网络还扩展了BMS的功能。SmartMesh无线网络可实现电池模块的灵活放置,并改善了电池SOC和SOH的计算。这是因为可以从安装在以前不适合布线之处的传感器收集更多的数据。SmartMesh还供应了来自每个节点的时间相关测量结果,从而可以实现更加精确的数据收集。图4显示了有线互联和无线互联电池模块的比较。
ADI演示了业界首款无线汽车BMS概念车,在BMWi3.2车型中整合了LTC6811电池组监控器和ADISmartMesh网络技术。这是一项重大突破,有望提高电动汽车/混合动力汽车大型多节电池组的可靠性,并降低成本、重量和布线复杂性。
图2.独立的CAN模块并联。
图3.采用CAN网关的模块串联。
精确测量的重要性
精度是BMS的一个重要特性,关于LiFepO4电池至关重要。3,4为了了解该特性的重要性,我们考虑图5中的示例。为了防止过度充电和放电,电池单元应保持在满容量的10%到90%之间。在85kWh的电池中,可用于正常行驶的容量仅为67.4kWh。假如测量误差为5%,为了继续安全地进行电池运行,必须将电池容量保持在15%至85%之间。总可用容量已从80%减少到了70%。假如将精度提高到1%(关于LiFepO4电池,1mV的测量误差相当于1%的SOC误差),那么电池现在可以在满容量的11%到89%之间运行,新增了8%。使用相同的电池和精度更高的BMS,可以新增每次充电的汽车行驶里程。
电路设计人员根据数据手册中的规格来估算电池测量电路的精度。其他现实世界的效应通常会在测量误差中占主导地位。影响测量精度的因素包括:
初始容差
温度漂移
长期漂移
湿度
pCB装配应力
噪音抑制
图4.电池监控互联方式比较。
图5.电池充电限制。
完善的技术必须考虑所有这些因素,才能供应非常出色的性能。IC的测量精度重要受基准电压的限制。基准电压对机械应力很敏感。pCB焊接期间的热循环会出现硅应力。湿度是出现硅应力的另一个原因,因为封装会吸收水分。硅应力会随着时间的推移而松弛,从而导致基准电压的长期漂移。
电池测量IC使用带隙基准电压或齐纳基准电压。IC设计人员使用反向击穿时的NpN发射极-基极结作为齐纳二极管基准电压源。击穿发生在芯片表面,因为污染物和氧化层电荷在此处效应最为明显。这些结噪声高,存在不可预测的短时间和长期漂移。埋入式齐纳二极管将结放置在硅表面下方,远离污染物和氧化层的影响。其结果是齐纳二极管具有出色的长期稳定性、低噪声和相对精确的初始容差。因此,齐纳二极管基准电压源在减轻随时间变化的现实世界的效应方面表现出众。
LTC68xx系列使用了实验室级的齐纳二极管基准电压源,这是ADI经过30多年不断完善的技术。图6显示了五个典型单元的电池测量IC误差随温度的漂移。在整个汽车级温度范围-40°C至+125°C内,漂移都小于1mV。
图7比较了带隙基准电压源IC和埋入式齐纳二极管基准电压源IC的长期漂移。初始测量值的误差校准为0mV。通过在30°C下3000小时之后的漂移来预测十年的测量漂移。该图片清楚地显示了随着时间的推移,齐纳二极管基准电压源具有更出色的稳定性,至少比带隙基准电压源提高5倍。类似的湿度和pCB装配应力测试表明,埋入式齐纳二极管的性能比带隙基准电压源更胜一筹。
图6.LTC6811测量误差与温度的关系。
图7.埋入式齐纳二极管和带隙基准电压源之间的长期漂移比较。
图8.ADC滤波器的可编程范围和频率响应。
精度的另一个限制因素是噪声。由于电动汽车/混合动力汽车中的电机、功率逆变器、DC-DC转换器和其他大电流开关系统会出现电磁干扰,因此汽车电池是面向电子器件非常恶劣的环境。BMS要能够供应高水平的噪声抑制,才能保持精度。滤波是用来减少无用噪声的经典方法,但它要在降低噪声与转换速度之间进行权衡。由于要转换和传输的电池电压很高,因此转换时间不能太长。SAR转换器或许是理想选择,但在多路复用系统中,速度受到多路复用信号的建立时间限制。此时,Σ-Δ转换器则成为有效的替代方法。
ADI的测量IC采用了Σ-Δ模数转换器(ADC)。通过Σ-ΔADC,可在转换过程中输入进行多次采样,然后取其平均值。结果构成内置低通滤波,从而可消除作为测量误差源的噪声;截止频率由采样速率确定。LTC6811采用了一个三阶Σ-ΔADC,具有可编程采样速率和八个可选截止频率。图8显示了八个可编程截止频率的滤波器响应。通过对所有12节电池在290µs的时间内快速完成测量,可实现出色的降噪效果。大电流注入测试将100mA的RF噪声耦合到连接电池与IC的导线中,该测试显示测量误差小于3mV。
电池平衡以优化电池容量
即使能精确地制造和选择电池,它们之间也会显示出细微的差异。电池之间任何的容量不匹配都会导致电池组整体容量的减少。
为了更好地理解这一点,我们来考虑一个示例,其中各节电池保持在满容量的10%到90%之间。深度放电或过度充电会大大缩短电池的有效使用寿命。因此,BMS供应欠压保护(UVp)和过压保护(OVp)电路,以帮助防止出现这些情况。当容量最低的电池达到OVp阈值时,将停止充电过程。在这种情况下,其他电池尚未充满电,并且电池储能没有达到最大允许的容量。同样,当最低充电量的电池达到UVp限值时,系统停止工作。另外,电池组中仍然有能量可为系统供电,但是出于安全原因,不能继续使用电池组。
显然,电池组中最弱的电池支配着整个电池组的性能。电池平衡是一种通过在电池充满电时均衡电池之间的电压和SOC来帮助克服此问题的技术。5电池平衡技术有两种:被动和主动。
使用被动平衡时,假如一节电池过度充电,就会将多余的电荷耗散到电阻中。通常,采用一个分流电路,该电路由电阻和用作开关的功率MOSFET组成。当电池过度充电时,MOSFET关断,将多余的能量耗散到电阻中。LTC6811使用一个内置MOSFET来控制各节电池的充电电流,从而平衡被监视的每节电池。内置MOSFET可使设计紧凑,并能够满足60mA的电流要求。关于更高的充电电流,可以使用外部MOSFET。该器件还供应了按时器来调整平衡时间。
耗散技术的优点是低成本和低复杂度。缺点是能量损耗大并且热设计更复杂。而另一方面,主动平衡会在模块的其他电池之间重新分配多余的能量。这样,可以回收能量并且出现的热量更低。这种技术的缺点是硬件设计更复杂。
图9.采用主动平衡的12节电池的电池组模块。
图9显示了采用LT8584实现的主动平衡。该架构通过主动分流充电电流,并将能量返回电池组来解决被动分流平衡器存在的问题。能量并没有以热量的形式发生损耗,而是被重新利用,为电池组中的其余电池充电。该器件的架构还解决了一个问题,即当电池组中的一节或多节电池在整个电池组容量用尽之前就达到较低安全电压阈值时,会造成运行时间减少。只有主动平衡才能将电荷从强电池重新分配到弱电池。这样可以使弱电池继续为负载供电,从而可从电池组中提取更高百分比的能量。反激式拓扑结构允许电荷在电池组内任意两点之间往返。大多数应用将电荷返回到电池模块(12节或更多),其他一些应用则将电荷返回到整个电池组,还有些应用将电荷返回到辅助电源轨。
结论
低排放车辆的关键是电气化,但还要对能源(锂离子电池)进行智能管理。假如管理不当,电池组可能会变得不可靠,从而大大降低汽车的安全性。高精度有助于提高电池的性能和使用寿命。主动和被动电池平衡可实现安全高效的电池管理。分布式电池模块易于支持,并且将数据稳定地传递到BMS控制器(无论是有线方式还是无线方式)能够实现可靠的SOC和SOH计算。