燃料锂电池催化剂可以不“贵”

2020-03-04      1302 次浏览

电动汽车已穿梭在大街小巷,燃料锂电池车还会远吗?实现这样的场景,燃料锂电池是关键。


然而,除生产成本过高外,燃料锂电池的能量转换效率因阴极氧还原反应缓慢而受到制约。因此,研究并开发替代贵金属催化剂、提高电催化剂活性成为燃料锂电池发展的重要研究课题之一。


我国科学技术大学国家同步辐射实验室副研究员刘庆华团队在相关研究中取得进展,不仅开发出一种替代贵金属催化剂,且其活性高出贵金属催化剂2~10倍。相关成果近日在线发表于《自然—能源》。


寻找替代贵金属


燃料锂电池不只在汽车工业的应用前景广阔,还可用在能源发电、家用电源、特种航天等领域。


作为一种可直接将燃料的化学能转化为电能的电化学装置,燃料锂电池具有能量转换效率高、零排放或低排放等优点。“有望成为人类社会清洁高效能源利用的重要形式。”刘庆华告诉记者。


然而,目前燃料锂电池的能量转换效率重要受限于电池阴极缓慢的氧反应的动力学过程。


在燃料锂电池中,铂(Pt)是最优的阴极氧还原反应催化剂,但其储量少、价格昂贵,是导致燃料锂电池生产成本较高的重要原因;而且铂作为催化剂的化学稳定性较弱,催化耐久性不足。刘庆华表示,因此“急需开发高活性、高稳定性、低成本的氧关联催化材料”。


相比于铂,铁(Fe)、钴(Co)、镍(Ni)等3d过渡金属材料在地球的储量丰富,价格便宜,并且具有高催化活性的潜力,研究人员一直梦想着激活这类3d过渡金属材料的活性,替代昂贵的贵金属催化剂。


但面对的挑战是,如何有效地将这些过渡金属原子连接,改变它们的电子结构并激活活性。


刘庆华等科研人员注意到,金属有机框架化合物这类材料可以通过有机连接剂将金属原子整齐地排列起来。“一是宏观上金属原子以单个原子的形式存在,极大地新增了金属原子的利用率;二是中间的有机连接剂为通过外力手段调控供应了可能。”刘庆华说。


借助同步辐射光源


电催化反应过程中,能有效参与反应的位于催化材料—电解质溶液的固—液反应界面上的活性位点不足,加之催化电极表面所吸附反应前驱物和反应中间产物的浓度极低,给实时探测带来很大的困难。


不过,高亮度的先进同步辐射光源为研究这一问题供应了契机。


同步辐射是一种强度大、亮度高、频谱持续、方向性及偏振性好、有脉冲时间结构和洁净真空环境的优异新型光源,国家同步辐射实验室有我国第一台以真空紫外和软X射线为主的专用同步辐射光源(以下简称合肥光源)。


刘庆华团队基于合肥光源,建立并发展了适用于固—液相电催化反应过程原位探测的傅里叶变换红外光谱实验技术,实现对上述问题的原位实时在线监测。


同时,研究人员利用光诱导晶格应变策略,将晶格应力引入到过渡金属基—金属有机框架(NiFe-MOF)化合物的晶格中,成功激活NiFe-MOF化合物金属节点的催化活性,实现其高质量活性、高稳定性的电驱动氧关联催化。


在我国科学技术大学合肥微尺度物质科学国家实验室特任教授孙永福看来,同步辐射傅里叶变换红外光谱实验技术的完善,对其他利用同步辐射光源的原位技术起到了指导作用。“为进一步研究燃料锂电池的内在机制,发展燃料锂电池体系供应了技术支持。”他告诉记者。


活性高出2~10倍


在此基础上,刘庆华团队首次观察到在氧催化过程中,伴随着过渡金属基镍活性中心价态的升高,氧反应关键中间产物*OOH出现并与Ni4+高价活性中心直接成键,从原子水平上揭示了NiFe-MOF化合物催化材料高效的电催化反应机制。


刘庆华介绍,在氧催化反应中,NiFe-MOF化合物表现出优异的电催化氧还原和氧析出活性,是以碳为基的铂催化剂(Pt/C)的2~10倍。


例如,将NiFe-MOF材料用在氧还原反应中,NiFe-MOF的催化质量活性每克金属高达500安,Pt/C的催化质量活性在相同条件下为每克金属260安。


接下来,再将NiFe-MOF材料用在氧还原的逆反应—氧氧化反应中,NiFe-MOF的催化质量活性更是每克金属高达2000安,而二氧化钌在相同条件下的催化质量活性每克金属仅为17安。


刘庆华表示,这意味着,“在相同的催化活性下,相比于贵金属催化剂,NiFe-MOF材料用量更少,极大地节约材料并进一步降低成本”。


此外,NiFe-MOF化合物催化材料在每平方厘米100~200毫安的高电流密度下持续进行200小时的电催化氧还原或析出氧反应,仍能维持约97%的初始催化活性,证实NiFe-MOF化合物具有极高的化学稳定性和催化耐久性。


孙永福认为,NiFe-MOF化合物有望成为高效的工业燃料锂电池阴极氧还原催化剂,为发展贵金属催化替代供应一种新的参考途径。


据悉,燃料锂电池要满足工业上实际应用的要,需用5000小时以上的寿命和更大的工作电流密度。刘庆华表示,下一步团队一方面将通过更长时间的工作运行测试,检验该材料在工业工作条件下的稳定性和寿命;另一方面,也将进行实际的燃料锂电池组装,研究该材料在实际器件中应用的可能性。


相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号