【引言】
钙钛矿太阳能电池自从2009年首次报道以来已经取得了巨大进展。大部分溶液法制备的钙钛矿太阳能电池已认证的效率达到20%以上。然而几乎所有高效率的钙钛矿太阳能电池都是用旋涂法制备的,这种制备方法无法满足工业化的高吞吐量与规模化制备的要求。研究者研发了几种适用于规模化生产的钙钛矿薄膜制备方法,如:刮刀涂布法、喷雾沉积法、喷墨打印法和电沉积等。其中,由于刮刀涂布法的基底温度可控,因此在规模化制备高质量、大晶粒钙钛矿薄膜方法中脱颖而出。值得欣慰的是刮刀涂布法制备的钙钛矿太阳电池效率以及高达19%,已经十分接近旋涂法制备的器件。
商业化生产不仅要满足与规模化生产,还要满足制造成本低。但是现在钙钛矿太阳能电池都需要昂贵的空穴传输层来实现高效率,如spiro-OMeTAD等。此外,疏水性的空穴传输层的存在导致将钙钛矿薄膜很难刮涂上去。因此考虑将空穴传输层去掉不仅有利于降低材料成本,还有利于降低制造成本,节约时间。
然而在去掉空穴传输层后,钙钛矿薄膜与ITO的功函数不匹配导致空穴很难从钙钛矿传输至ITO层,因此导致器件效率低下。如何解决功函数匹配问题是制备无空穴层高效钙钛矿太阳能电池面临的巨大挑战。
【成果简介】
近日,北卡罗纳大学和内布拉斯加大学林肯分校的黄劲松教授在Nat.Commun.上发表了一篇题为Moleculardopingenabledscalablebladingofefficienthole-transport-layer-freeperovskitesolarcells的文章。该文章报道了一种分子掺杂策略成功的解决了钙钛矿与ITO的能带不匹配问题,实现了效率高达20%的无空穴传输层钙钛矿太阳能电池,此外该研究配合刮刀涂布法成功实现了高效太阳能电池的量产化。
【图文简介】
图1:刮刀涂布法和掺杂F4TCNQ分子的钙钛矿薄膜
(a).刮刀涂布钙钛矿薄膜示意图和F4TCNQ掺杂剂的化学结构式;
(b).基底为150摄氏度,刮涂在ITO上的钙钛矿薄膜的侧面SEM图;
(c-h).无掺杂钙钛矿薄膜的AFM图(c)和表面势垒图(f);F4TCNQ掺杂钙钛矿薄膜的AFM图(d)和表面势垒图g);将F4TCNQ颗粒洒在杂钙钛矿薄膜的AFM图(e)和表面势垒图(h);
(i).不同钙钛矿膜表面电位分布;
(j).MApbI3:F4TCNQ共混物能量图和电子转移过程示意图。
图2:纯钙钛矿薄膜和掺杂钙钛矿薄膜的电导率和光致发光寿命
(a).钙钛矿薄膜横向电导率的测试模型;
(b).掺杂与无掺杂钙钛矿薄膜的I-V曲线;
(c).时间分辨光致发光曲线;
(d).导电原子力显微镜测试方法;
(e-h).无掺杂的钙钛矿薄膜的晶粒形貌AFM图(e)和在晶粒上与晶界上的C-V图(f);掺杂的钙钛矿薄膜的晶粒形貌AFM图(g)和在晶粒上与晶界上的C-V图(h)。
图3:钙钛矿薄膜形貌,器件结构与光伏性能
(a-b).掺杂钙钛矿薄膜的低分辨率与高分辨率SEM图;
(c).无空穴层钙钛矿电池器件结构图;
(d).J-V曲线;
(e).稳态电流和稳态pCE测试;
(f).EQE和积分电流;
(g).器件效率的统计分布图。
图4:界面空穴转移机理
(a).空穴在ITO/MApbI3界面转移示意图;
(b).空穴在ITO/F4TCNQ-MApbI3界面转移示意图。
【小结】
该研究首先利用刮刀涂布法克服了大规模制备高质量钙钛矿薄膜难题,然后通过分子掺杂法解决了高效率无空穴传输层钙钛矿电池的难题。最后器件效率高达20%,并且几乎无迟滞效应。该研究为钙钛矿太阳能电池商业化带来了曙光。
技术专区贸泽电子备货ST的ACEpACK™IGBT模块具有30kW的高集成度功率转换功关于世界顶尖锂电池研究团队及研究方向的介绍直流稳压电源一般有哪几部分组成?主要技术指标有哪些?程控开关稳压电源的控制方式对比三相SpWM逆变器的调制建模和仿真详解