如何优化逆变器中的高电压IGBT设计

2019-12-31      1017 次浏览

随着绿色电力运动势头不减,包括家电、照明和电动工具等应用,以至其他工业用设备都在尽可能地利用太阳能的优点。为了有效地满足这些产品的需求,电源设计师正通过最少数量的器件、高度可靠性和耐用性,以高效率把太阳能源转换成所需的交流或者直流电压。


要为这些应用以高效率生产所需的交流输出电压和电流,太阳能逆变器就需要控制、驱动器和输出功率器件的正确组合。要达到这个目标,在这里展示了一个针对500W功率输出进行优化,并且拥有120V及60Hz频率的单相正弦波的直流到交流逆变器设计。在这个设计中,有一个DC/DC电压转换器连接到光伏电池板,为这个功率转换器提供200V直流输入。不过在这里没有提供太阳能电池板的详细资料,因为那方面不是我们讨论的重点。


现在,市场上有不同的高级功率开关,例如金属氧化物半导体FET(MOSFET),双极型三极管(BJT),以及绝绿栅双极晶体管(IGBT)来转换功率。然而,这个应用要达到最高的转换效率和性能要求,就要选择正确的功率晶体管。


多年来的调查和分析显示,IGBT比其他功率晶体管有更多优点,当中包括更高电流能力,利用电压而非电流来进行栅极控制,以及能够与一个超快速恢复二极管协同封装来加快关断速度。此外,工艺技术及器件结构的精细改进也使IGBT的开关性能得到相当的改善。其他优点还包括更好的通态性能,以及拥有高度耐用性和宽安全工作区。在考虑这些质量之后,这种功率逆变器设计就会选用高电压IGBT,作为功率开关的必然之选。


因为这个设计所实施的逆变器拓扑属于全桥,所以有关的太阳能逆变器采用了4个高电压IGBT,如图1所示。在这个电路中,Q1和Q2晶体管被指定为高侧IGBT,而Q3和Q4则为低侧功率器件。为了要保持总功率耗损处于低水平,但功率转换则拥有高效率,设计师要在这个DC/AC逆变器解决方案正确应用低侧和高侧IGBT组合。


图1采用4个IGBT的逆变器设计


沟道和平面IGBT


为了要同时把谐波和功率损耗降到最低,逆变器的高侧IGBT利用了脉宽调制(PWM),同时低侧功率器件就用60Hz进行变化。通过把PWM频率定在20kHz或以上操作,高侧IGBT有50/60Hz调制,输出电感器L1和L2便可以保持实际可行的较少尺寸,提供有效的谐波滤波。再者,逆变器的可听声也可以降到最低,因为开关频率已经高于人类的听觉范围。


我们研究过采用不同IGBT组合的各种开关技术后,认定能够实现最低功率耗损和最高逆变器性能的最好组合,是高侧晶体管利用超高速沟道IGBT,而低侧部分就采用标准速度的平面器件。与快速和标准速度平面器件比较,开关频率在20kHz的超高速沟道IGBT提供最低的总通态和开关功率损耗组合。高侧晶体管的开关频率为20kHz的另外一个优点,是输出电感器有合理的小尺寸,同时也容易进行滤波。在低侧方面,我们把标准速度平面IGBT的开关频率定在60Hz,使功率损耗可以保持在最低的水平。


当我们细看高电压(600V)超高速沟道IGBT的开关性能,便会知道这些器件为20kHz的开关频率进行了优化。这使设计在相关的频率下能够保持最少的开关损耗,包括集电极到发射极的饱和电压Vce(on)及总开关能量ETS。结果,总通态和开关功率损耗便可以维持在最低的水平。根据这一点,我们选择了超高速沟道IGBT,例如,IRGB4062DPBF作为高侧功率器件。这种超高速构道IGBT与一个超高速软恢复二极管采用协同封装,进一步确保低开关耗损。


相关文章

推荐品类

为您推荐

东莞市钜大电子有限公司 粤ICP备07049936号