无法根治的锂电安全性能?
锂电池的安全性归根到底一句话,就是来自于电池的热失控。锂电池除了正常的充放电反应外,还存在潜在的副反应。当电池温度过高或者充电电压过高的时候,这些副反应就会被引发,并释放大量热量。如果热量得不到及时疏散,还会引起电池温度和压力的急剧上升,形成恶性循环,最后导致热失控,造成安全事故。
不幸的是,从锂电反应机理而言,单体电池的热失控隐患是无法根除的,只能通过诸如热控制技术(PTC电极)、正负极表面陶瓷涂层、过充保护添加剂、电压敏感隔膜以及阻燃性电解液等等技术的综合性应用来无限改善单体电芯的安全性能,但无法真正根除。
关于电芯层面的锂电安全性,武汉大学教授艾新平做了非常全面的分析,从热失控过程来看,发生热失控最早的一个反应是负极表面SEI膜的分解,由于负极成份及添加剂的不同,SEI膜的分解分度大概在120-140℃,发生分解以后,负极裸露在电解液中,并发生剧烈的还原分解,放出大量的可燃性气体和热量,促使电池的温度进一步上升,直至正极发生分解。
正极发生分解时,温度大概在180-200℃,此时电芯的副反应就很难控制了,因为正极分解时不仅仅释放大量的热量,还会产生活性极高的氧原子,导致电解液直接氧化分解,短时间内会造成电池内部大量的热量积累。
如何提升单体电芯的安全性能?
尽管锂电安全无法根治,但却是可控可防的,正确面对并积极探索一些新的安全性技术,将有利于促进电池技术进步,比如提高材料/界面热稳定性,开发单体自激发热保护技术,以及系统热扩展防范技术,就可以有效改善电池系统的安全性。以下为艾新平教授在电芯安全层面的研究,可供读者参考。
表面包覆。正极的热分解和它引起的析氧主要在于它和界面(电解液)的反应,于是我们可以在正极活性表面包覆热稳定的保护层。比如在高镍的正极表面包覆磷酸膜或者磷酸锂以后,可以减少高镍材料与电解液的直接接触,从而降低副反应的强度和产热。常见的包覆材料包括磷酸盐、氧化物、氟化物,也可以是一些聚合物。
构建浓度梯度。高镍正极的不安全,除了本身的热稳定性不好以外,更重要的是镍对电解液的氧化分解作用非常强,而材料本身的放热量并不是那么大,但是加上电解液以后,它的产热温度和产热量是急剧提高的,原因就是电解液的界面反应占了很大的部分。如果我们将高镍作为核,用一些低镍含量的材料作为壳,让它内外有一个浓度梯度,这样就有助于降低这个材料界面的反应活性,提高电池安全性。
防止热失控的诱发和蔓延才是工作重点
尽管艾新平教授介绍了多种提高单体电芯安全性的思路,但正如前文所提到的,我们始终无法从工艺上保证清除所有的安全隐患。与其在电芯的工艺层面做过多纠结,不如将工作重点放在系统层面,即防止单体发生热失控以后产生系统的功能障碍,甚至是灾难性事故。
中国电动汽车百人会执行副理事长欧阳明高也表示,当前锂离子电池从单体层面完全杜绝热失控是不太现实的,但我们可以从电池系统的热机电设计与控制设计来防止诱发和蔓延,即便单体出现热失控也不会发生事故